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Antigen presentation on HLA molecules is a major mechanism by which the immune

system monitors self and non-self-recognition. Importantly, HLA-I presentation has

gained much attention through its role in eliciting anti-tumor immunity. Several

determinants controlling the peptides presented on HLA have been uncovered, mainly

through the study of model substrates and large-scale immunopeptidome analyses.

These determinants include the relative abundances of proteins in the cell, the stability

or turnover rate of these proteins and the binding affinities of a given peptide to the

HLA haplotypes found in a cell. However, the regulatory principles involved in selection

and regulation of specific antigens in response to tumor pro-inflammatory signals remain

largely unknown. Here, we chose to examine the effect that TNFα and IFNγ stimulation

may exert on the immunopeptidome landscape of lung cancer cells. We show that the

expression of many of the proteins involved in the class I antigen presentation pathway

are changed by pro-inflammatory cytokines. Further, we could show that increased

expression of the HLA-B allomorph drives a significant change in HLA-bound antigens,

independently of the significant changes observed in the cellular proteome. Finally, we

observed increased HLA-B levels in correlation with tumor infiltration across the TCGA

lung cancer cohorts. Taken together, our results suggest that the immunopeptidome

landscape should be examined in the context of anti-tumor immunity whereby signals in

the microenvironment may be critical in shaping and modulating this important aspect of

host-tumor interactions.
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INTRODUCTION

Antigen processing and presentation is a major cellular mechanism through which cells are
monitored by the immune system. Specifically, the immune system can identify diseased cells
through peptides, that are presented on class I and II Human Leukocyte Antigen (HLA) (1).
The repertoire of presented peptides is defined through a combination of determinants, including
the proteins found in the cell, how they are processed into peptides by proteasomes (MHCI) or
lysosomes (MHCII) and further bound by HLA molecules and transported to the cell surface (2–
7). Numerous studied have analyzed the peptides presented on HLA in many physiological states.
However, our knowledge about the underlying molecular mechanisms by which cells modulate
their presented repertoire in response to an altered cellular environment or different stimuli
remains largely unknown.
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Previous studies, characterizing peptides that are presented
on HLA, found that these peptides originate from proteins
throughout the cell (8–10). With technological advancements of
mass spectrometry, higher coverage of the peptidome presented
on HLA, or immunopeptidome, has been achieved. These
advancements allowed for identification of thousands of peptides
per biological sample, thereby revealing the immunopeptidome
landscape. Recent, studies have revealed that up to 40% of the
immunopeptidome differs between cell types, elucidating the
potential complexity of the regulation of antigen presentation in
physiological systems (11).

The determinants affecting and regulating antigen
presentation may be generally divided into two categories,
namely cis or trans-regulation. The first (cis) relies on the
properties of the protein that is being cleaved and presented
(e.g., peptide sequence, expression level) and the second (trans)
relies on the enzymatic machinery and cellular proteins that are
involved in its cleavage, HLA binding and shuttling to the cell
surface. Indeed, numerous cis-factors were already shown to
play a role in determining the presented peptidome, including
transcript abundance, protein abundance, protein length and
protein degradation rate (12–16). Nevertheless, there is no clear
consensus on the specific contribution of each of these factors
to the selection of peptides and their presentation. Importantly,
the relative contribution of each factor may differ between
biological states. For example, the presentation of viral antigens
has been linked to the translation rate of viral proteins, not
their degradation rate (17). During cellular infection, upon
development of cancer or in the course of autoimmune diseases
the proteome of the cell is altered. This is due to the introduction
of novel exogenous proteins, changes in protein expression
levels or mutations that arise in endogenous cellular proteins
through protein translation (18–20). The relative frequencies
with which proteins are degraded, or protein half-lives, change in
various disease states (21, 22) and these factors influence peptide
selection and presentation.

As mentioned above, some determinants contribute in
trans by modulating the expression and activity of the
various components of the antigen processing and presentation
machinery, influencing the presented peptidome. In the case of
class I presentation these include the proteasome, Transporter
Associated with Antigen Presentation (TAP), cellular peptidases
and the HLA complex itself (23–29). In particular, the specific
haplotypes of HLA have a strong effect on the repertoire of
presented peptides. Each HLA variant has different binding
constraints that determine a biochemical motif of the peptides
presented on the complex (30, 31). Greater diversity of HLA
haplotypes leads to a larger and more diverse presented
peptidome (12). These constraints have been studied through the
comparison of different cell lines or tissues, which have different
haplotypes, as well as direct biochemical studies on individual
haplotypes. Additionally, the binding properties form the basis
of algorithms for predicting the peptides, which could be bound
by a given HLA molecule (32).

Importantly, most of the studies conducted thus far
focused on cells grown in vitro, due to the large quantities
of material needed to analyze the HLA peptidome. Less

attention has been given to elucidation of the plasticity of the
presented peptidome or to how the peptidome is modulated
by changes in the cellular proteome. For example, following
treatment with the mTOR inhibitor rapamycin, the presented
peptidome changed, corresponding to the change in the cellular
proteome and proteasome activity (33). In addition, proteasome
cleavage patterns contribute to the immunopeptidome. It was
previously shown that pro-inflammatory cytokines induce
immunoproteasomes, which generate peptides that are more
hydrophobic in nature and are more likely to be presented
by HLA molecules (34). Immunoproteasomes have two
chymotrypsin-like catalytic subunits, in contrast to the single
subunit in constitutive proteasomes (35). Accordingly, induction
of immunoproteasomes by IFNγ has been shown to increase the
presentation of long peptides with chymotryptic-like cleavage
patterns (36). Further it was shown that upon deletion of two
subunits of the immunoproteasome, MECL1 and LMP7, the
presented peptidome decreased in depth and diversity (11).
In the case of a specific antigen, NY-ESO-1, IFNγ mediated
induction of the immunoproteasome changed the peptides
presented and the resulting T cell response (37). In addition
to their effect on immunoproteasomes, TNFα and IFNγ were
also shown to increase the amount of HLA molecules on the
cell surface, and specifically increase the amount of HLA-B as
there are two interferon response elements upstream of the
HLA-B locus, whereas the HLA-A and -C locus only contain one
(38–41). Recently, the relative changes in haplotype expression
on the immunopeptidome, in response to IFNγ-induced
upregulation of HLA expression, was analyzed by Komov et al.
on MCF-7 cells (42).

Here, we examined the effect of TNFα and IFNγ stimulation
on the immunopeptidome. The combination of the two
cytokines work synergistically to modulate the levels of the
antigen processing and presentation machinery (43–47) and
may reflect the pro-inflammatory conditions in a tumor
microenvironment (TME). We used mass spectrometry (MS)
basedmeasurements of both the cellular proteins (proteome) and
the HLA class I peptidome of the lung epithelial cell line, A549,
which was previously shown to upregulate immunoproteasome
expression in response to inflammatory signal (48). Our analysis
revealed a mechanism of direct modulation of the peptidome
through an inflammatory signal, which alters the relative
expression of the HLA haplotypes. Our results suggest that the
microenvironment of cells may significantly affect the landscape
of the presented peptidome via modulation of the expression of
specific haplotypes.

RESULTS

TNFα and IFNγ Signaling Increases
Presentation of MHC I Peptides
This study utilized A549 cells, a KRAS-driven cancer cell
line derived from alveolar epithelial cells. To induce an
inflammatory-like response in-vitro, the cells were stimulated
with TNFα and IFNγ (hereby referred to as “stimulation”). As
previously shown (49) upon stimulation, the surface expression
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FIGURE 1 | Immunoproteasome activity is induced by TNFα and IFNγ stimulation. (A) The Suc-LLVY-AMC constitutive proteasome substrate or (B) the Ac-PAL-AMC

immunoproteasome substrate were incubated with lysates after treatment with TNFα and IFNγ for the indicated times (0–24 h). The final fluorescence measurement in

relative fluorescence units (Fluorescence Intensity; RFU) following 3.5 h of incubation with the substrate is plotted (error bars indicate standard deviation).

of HLA was increased, as detected by flow cytometry analysis
(Supplementary Figures 1A,B). Furthermore, stimulation
with pro-inflammatory cytokines also induced a change
in proteasome activity in the cells. Following stimulation,
the level of the immunoproteasome catalytic subunits,
β2i and β5i, was increased as detected by western blot
(Supplementary Figure 1C). This was accompanied by a
slight decrease in the level of the constitutive catalytic subunit
β5 (Supplementary Figure 1C). To examine whether the pro-
inflammatory cytokines changed the proteasome activity, we
tested cleavage of two fluorogenic substrates, Ac-PAL-AMC and
Suc-LLVY-AMC that are used to assess the catalytic activity of
the immuno- and constitutive proteasome, respectively (50).
When supplemented into functional extracts, these peptides are
released and the fluorescence of the AMC moiety is measured.
While the constitutive proteasome activity did not increase
(Figure 1A), an increase in immunoproteasome-associated
activity after TNFα and IFNγ stimulation was observed
(Figure 1B). Furthermore, while the duration of stimulation
did not significantly increase the activity of the constitutive
proteasome Figure 1A; one way ANOVA: [F(5, 12) = 1.372,
p = 0.3], the activity of the immunoproteasome significantly
increased Figure 1B; one way ANOVA: [F(5, 12) = 19.84,
p < 0.0001]. Finally, we confirmed that there was no significant
decrease in cellular viability following 24 hours of cytokine
stimulation (Supplementary Figure 1D). Given that there
are dramatic changes in the MHC peptide processing and
presentation pathway upon cytokine signaling, we set out to
profile the immunopeptidome landscape after 24 h of stimulation
(Figure 2A). A549 cells were stimulated with TNFα and IFNγ

(denoted as T+I) or left untreated (UT) and HLA-bound
peptides were isolated and analyzed by LC-MS/MS and the
MaxQuant software tool (51) as previously described (42).
Following filtering and processing steps (detailed in the materials
and methods), we identified an average of 3,444 peptides in the
untreated samples and 6,582 peptides in the treated samples
(Figure 2B). Biological replicates showed 0.56–0.91 spearman

correlation (Figure 2C), while the stimulated and untreated
samples did not correlate with one another, rho = −0.02 to
0.41 (Figure 2C and Supplementary Figure 2A). Due to the
low number of peptides identified in the third triplicate of
untreated cells (UT-3), as well as the poor correlation to the other
samples in the triplicate (Figures 2B,C), the sample was excluded
from the analysis (see materials and methods). However, we
confirmed the validity of our conclusions was not affected by
this exclusion (Supplementary Figures 3A–C). Importantly, we
found a significant increase in peptide abundance after cytokine
stimulation (Figure 2D; ∗ p = 0.0215). Of the peptides which
significantly changed in abundance, most were increased by the
stimulation (Figure 2E).

The Presented Peptidome Alters
Significantly in Response to TNFα and IFNγ

Stimulation
In conjunction with the MHC profiling, the proteome of whole
cell extracts (WCE) from the same culture and treatment
condition were analyzed using bottom-up proteomics to examine
the “cellular proteome”. We identified between 4,062 and 4,305
proteins per replicate. As expected, we found numerous proteins
whose abundance increased upon stimulation and which are
known to be involved in the response to IFNγ, such as STAT1
(52, 53) (Supplementary Figure 4A; Supplementary Table 1).
Furthermore, many of the known interferon inducible proteins
increased in abundance (e.g., IFIT1, IFIT2, and IFIT3). We
then examined which pathways were changed as a result of
the cytokine stimulation using PANTHER (54). As would be
expected, the most enriched pathway was that of Antigen
Processing and Presentation (Supplementary Figure 4B; GO:
0019882). Likewise, we identified response to IFNγ as another
significantly enriched pathway (GO: 0034341). However, the
proteins representing the HLA peptides identified in the
immunopeptidome analysis were not significantly enriched for
specific biological processes or pathways.
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FIGURE 2 | Analyzing the TNFα and IFNγ stimulated presented peptidome. (A) Experimental and informatics workflow includes stimulation of A549 cells with TNFα

and IFNγ for 24 h, harvesting samples which were subject to MS-analysis of both the peptides presented on MHC I (immunopeptidome) and total cellular lysates

(Cellular Proteome). Thousands of peptides were identified, common contaminates were removed as well as peptides which were not identified in at least 2 of 3

replicates (replicates). Missing values were imputed to randomly chosen values from a normal distribution and the resulting peptides were subject to Gibbs Clustering.

(B) The number of unique peptides identified in the presented peptidome of each of the 3 triplicates stimulated with TNFα and IFNγ (T+I) or left untreated (UT). (C)

Spearman Rho of the peptide intensities from each pairwise combination of samples. (D) The mean presented peptide intensity (Log10) in the unstimulated (UT) and

stimulated (T+I) samples (*p = 0.0215; error bars indicate SD). (E) Supervised clustering of peptide intensities with and without stimulation of cells with TNFα + IFNγ

(T+I). Only peptides which significantly differed in abundance between the two conditions are displayed (city-block distance function on Log10 transformed intensity).

Significance is determined as p ≤ 0.05 (Benjamini-Hochberg FDR corrected P-values, student’s t-test).

When we compared the proteins identified in the WCE
and immunopeptidomics we found 25% that were detected
in both, 63% that were detected only in the cellular lysate
and 12% that were exclusive to the immunopeptidomics
(Supplementary Figure 5A). The fraction of proteins identified
solely in the immunopeptidomics pool may represent proteins
that are characteristically difficult to identify from WCE,
such as low-abundance, high-turnover proteins or trans-
membrane proteins. Interestingly, the immunopeptidome
changed more dramatically upon cytokine stimulation than the
cellular proteome (Figures 3A,B). By examining the change in
abundance for each protein detected, we found that almost 50%
of the proteins containing immunopeptides (denoted as parent
proteins) significantly increased in abundance upon stimulation
(Figure 3A), whereas only a small fraction of the cellular
proteome significantly changed in abundance (Figure 3B).

The Immunopeptidome Correlates With
Protein Half-Life but Not Cellular Protein
Abundance
Previous studies suggested that HLA molecules are more likely
to present peptides derived from proteins with high turnover
rate (13, 15). To examine this property in our data, we
extracted the published half-lives of the presented proteins that
we identified from the database of Larance et al. (55) which
includes a measure of degradation, or protein turnover ratio,
for the proteome. Indeed, we found that the mean protein
turnover ratio for the parent proteins of the immunopeptidome
is lower than that of the cellular proteome (Figure 3C; Mann-
Whitney ∗p = 0.0182). Likewise, using the GeneCards Suite
Human Integrated Protein Expression Database (HIPED) (56),
we found that cellular proteins, which are presented, had
lower abundance (on average) than the proteins that are not
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FIGURE 3 | The change induced in the TNFα and IFNγ stimulated presented peptidome is not driven by the abundance change in the cellular proteome. (A) The

immunopeptides were inferred to parent proteins (Presented Proteome) or (B) the proteins in the cellular lysate (Cellular Proteome) and then ranked based on the

change in intensity between TNFα and IFNγ stimulated and unstimulated cells. Each protein was assigned a standard score (Z score) based on the magnitude of the

deviation between the stimulated and unstimulated protein abundances. Scores >1 standard deviation were considered significant (dotted line = 1 sd.). (C) Protein

turnover ratios were taken from Larance et al. (55) who measured the decrease in protein abundance following treatment with the protein synthesis inhibitor

cycloheximide (CHX/DMSO, log2 transformed). The turnover ratio was here applied to the subset of proteins which contain presented peptides (presented proteome)

and those which are only found in the cellular lysate (cellular proteome). Error bars indicate confidence intervals on the mean (Mann-Whitney *p = 0.0182) (D) Protein

abundance was inferred from the GeneCards Suite Human Integrated Protein Expression Database (HIPED) (56) and applied to the subset of proteins which contain

presented peptides (Presented proteome) and those which are only found in the cellular lysate (cellular proteome). Error bars indicate confidence intervals on the mean

(Mann-Whitney ****p < 0.0001). (E) The ratio of cellular protein abundance between stimulation with TNFα + IFNγ (T+I) and unstimulated (UT) is plotted against the

ratio in intensity for the presentation of each protein (Log2 transformed ratios, Pearson correlation (r) is displayed on the graph, n = 1,239).

presented (Figure 3D; Mann-Whitney ∗∗∗∗P < 0.0001). Finally,
as was shown previously (15), the number of unique peptides
presented from a given protein modestly correlates with the
abundance of the protein in the cell (Supplementary Figure 6A)
and this correlation was not influenced by cytokine stimulation
(Supplementary Figure 6B). This held true even when the
number of peptides was normalized by the length of the protein
(Supplementary Figures 6C,D). However, when we compared
the subset of proteins that increased in abundance due to the
TNFα and IFNγ stimulation to proteins that did not, we found
no correlation (Figure 3E), suggesting that the increase in protein
abundance is not driving peptides for presentation on HLA.
However, there was a small fraction of proteins (n = 110) which
increased in abundance after stimulation by 2-fold or more
and is enriched in responders to IFNγ and general immune
system processes (Supplementary Figure 4B). In this fraction
of cellular proteins, the correlation with presented protein
abundance increases to r = 0.33 (Supplementary Figure 6E).
To rule out that the lack of correlation is due to the different
dynamic ranges of the immunopeptidome and cellular proteome,

we ranked the fold changes of all the proteins in both
datasets. Still, the analysis showed no correlation in the changes
observed in the immunopeptidome and cellular proteome
(Supplementary Figure 6F). We note that this observation may
be due to the specific time points at which we examined the data,
which may not capture a biological correlation between these
two processes. Nevertheless, our results indicate that the half-life
of proteins, rather than their abundance, may be an important
determinant in the regulation of the immunopeptidome.

The Upregulation of HLA-B Changes the
Presented Peptidome
It has previously been reported that HLA-B expression increases
more strongly than HLA-A and -C upon IFNγ signaling (38–
42). Based on this we examined the relative expression levels
of the three HLA loci. We found consensus sites between the
two haplotypes of each locus that had at least 3 mismatches
with the other two loci (see materials and methods section
for primer design). Therefore, each primer set amplifies the A,
B, or C transcript of HLA (Supplementary Figure 7A). Using
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FIGURE 4 | Determining the haplotype composition of A549 cells. (A) Relative levels of mRNA expression of HLA- A, B, and C with TNFα and IFNγ stimulation (T+I) or

unstimulated (UT). GAPDH was used as an internal normalizing control and each gene was normalized to the UT sample. (B) NetMHC 4.0 was used to predict which

of the identified presented peptides would bind to one of the HLA haplotypes found in A549 cells. The percentage of peptides identified which are predicted to bind to

each haplotype is plotted against the threshold of binding rank (NetMHC RANK). The typical strong (rank = 0.5) and weak (rank = 2) binding threshold are indicated on

the graph. (C) Gibbs clustering was performed on the identified peptides with four clusters. The motif of the peptides in each of the four clusters is displayed. (D) The

number of peptides in each cluster predicted to bind to one of the A549 haplotypes. (E) The log2 transformed ratio of presented peptide intensity between cells

stimulated with TNFα + IFNγ (T+I) and unstimulated (UT) for the peptides in each cluster (line at median, box for the second and third quartile, lines from min to max).
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FIGURE 5 | Induction of HLA-B changes the overall motif of presented peptides. (A) The motif of the top 25% (Enriched in T+I) of 9-mer peptides based on the

ranking in Figure S9E is compared to the bottom 25% (Enriched in UT). The residues that are enriched at each position are displayed above or below the axis (B–D)

Peptides were classified as tryptic-like (K, R c-terminal residues) or chymotryptic like (A,F,I,L,M,V,Y c-terminal residues). The fold change in intensity for each peptide

between TNFα and IFNγ stimulated (T+I) and unstimulated cells (UT; Log2 transformed) was plotted against the p-value for the difference between the two treatment

groups (two-tailed t-test, –Log10 transformed). The peptides, which are tryptic-like (B, blue dots) or chymotryptic-like (C, red-dots), are overlaid on the background of

all peptides identified along with the histogram of intensity fold changes for these three groups of peptides (D; tryptic-like, chymotryptic-like and other).

these primers, we performed quantitative real-time polymerase
chain reaction (qPCR) and found that HLA-A, B, and C
significantly increased in A549 cells upon stimulation for 24 h
(Figure 4A). Furthermore, the HLA-B transcript level increased
30-fold more than the increase in HLA-A, as was described in
Komov et al. (42).

Given that there is a significant change in the relative
levels of the different HLA loci upon stimulation, we predicted
this might explain much of the change in the resulting
immunopeptidome. Thus, we matched each peptide identified
in the immunopeptidome to the HLA haplotype it would be
predicted to bind to, using NetMHC (57, 58). Almost 80%
of the peptides identified were predicted to bind an MHC
with a binding rank of 2 or lower, suggesting a high binding
affinity (Figure 4B). Examining the binding constraints of the
allomorphs of the A549 cell line, we found that both HLA-B4403
and -B1801 bind mainly to peptides with a glutamic acid at the
second position (Supplementary Figure 7B).

To cluster peptides based on their biochemical properties,
we utilized the Gibbs clustering method and separated

the immunopeptidome into four distinct clusters based
on their sequence motifs (Supplementary Figure 8A;
Supplementary Table 2). Indeed, we found that the peptides
in each of the other clusters predominantly bind to a single
haplotype and that Cluster 3 reflected a known motif of HLA-
B1801 and -B4403 (Figure 4C). Indeed, when we examined
the percentage of each cluster predicted to bind to each of
the A549 HLA haplotypes, we found that over 90% of the
peptides in cluster 3 were predicted to bind to the HLA-B
haplotypes (Figure 4D and Supplementary Figure 8B). In
accordance with these findings, the peptides in cluster 3
exhibited a greater increase in intensity as a result of the cytokine
stimulation (Figure 4E). We did not observe such changes
neither in measured abundance of the cellular parent proteins
(Supplementary Figure 8C) nor in the HIPED abundance
across the four clusters (Supplementary Figure 8D). This
indicates that the increase in the abundance of peptides predicted
to bind to HLA-B is due to the increase in the expression
of HLA-B and not due to a change in the abundance of the
cellular proteins.
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Changes in the Cleavage and Binding of
HLA Peptides Following Pro-Inflammatory
Cytokine Stimulation Alters the
Immunopeptidome Landscape
Upon establishing that more HLA-B bound peptides are
presented following stimulation, we next assessed the impact
this has on the immunopeptidome landscape. Indeed, cluster
3 showed the greatest percentage of peptides, which were
unique to a given protein (Supplementary Figure 9A). We
then calculated the mean number of peptides presented per
protein (sampling density). Across the four Gibbs clusters,
only cluster 3 increased significantly in mean sampling
density upon stimulation. (Supplementary Figure 9B;
∗∗p = 0.0018, ∗∗∗∗p < 0.0001). Importantly, this was
in contrast to the representation of peptides from
cluster 3 prior to stimulation, which had the lowest
peptide density as compared to the other clusters
(Supplementary Figure 9B). Nevertheless, this was not
a result of changes in cellular protein abundance. We
found that the correlation between the number of peptides
presented from a protein and the protein abundance in the
cell remained constant across all clusters and treatments
(Supplementary Figures 9C,D).

These changes in the composition of the immunopeptidome
also affected the overall sequence motif. When we looked at
each peptide ranked by the amount of increase in abundance
following stimulation, we found that over 80% of the peptides
in the top quartile contained a glutamic acid at the second
position of the peptide (Supplementary Figures 9E–G). Further,
when we examined the sequence of the 9-mer peptides in
the top and bottom quartile, we found a motif very much
resembling the HLA-B binding motif was enriched in the
stimulated immunopeptidome, while a motif resembling
the binding motif of HLA-A2501 was enriched in the
unstimulated pool (Figure 5A). Thus, pro-inflammatory
cytokine stimulation changed the repertoire of the presented
peptides, skewing it to peptides with glutamic acid at the
second position, also corresponding to the binding motif
of HLA-B.

Notably, the cleavage motif of the presented peptides shifted
in accordance with the increased chymotryptic-like activity of
the immunoproteasome as observed by analysis of the carboxyl-
terminal (c-terminus) residue of the presented peptides. When
comparing the motif of the stimulated and unstimulated
peptidome, the most represented residue at the c-terminus of the
peptide is tyrosine (Y) and lysine (K), respectively (Figure 5A).
The tryptic-like activity of the proteasome is responsible for
cleavages after lysine, while the chymotryptic-like activity
cleaves after tyrosine. Indeed, when we classified all the peptides
with cleavage patterns resulting from the chymotryptic-like or
tryptic-like cleavage activity of the proteasome, chymotryptic-
like peptides increased more in intensity following stimulation
as compared to tryptic-like peptides (Figures 5B–D). This
correlates with the additional chymotryptic-like cleavage
activity of the immunoproteasome as discussed previously
(11, 36, 59).

Based on our analyses we have identified three ways by which
the stimulation affected the presented peptidome. First, we found
that, of the proteins containing peptides presented on HLA
following stimulation, 22% (845 proteins) were only presented
on HLA-B. Two examples of such proteins are PDE4D (cAMP-
specific 3′,5′-cyclic phosphodiesterase 4D; Figure 6A) and IFIT2
(Interferon Induced Protein with Tetratricopeptide Repeats 2;
Figure 6B). The former is a protein which is not expected to
change in abundance in the cell following stimulation, while
the second is known to be induced by IFNγ. Second, we
found proteins which contained peptides that are presented
both in unstimulated cells and following stimulation. However,
the availability of new HLA complexes with different binding
constrains allows for new areas of the protein (i.e., peptides) to
be presented. This is the case with HNRNPU (Heterogeneous
nuclear ribonucleoprotein U) which contains cluster 1 and
2 peptides that were identified in both unstimulated and
stimulated conditions, as well as cluster 3 peptides that were
only identified following stimulation (Figure 6C). Finally, there
are proteins such as EIF4A1 (Eukaryotic initiation factor 4A–
I) that have a peptides presented from them in low quantity,
but stimulation increases the number of peptides presented from
the same region of the protein (Figure 6D). Through these
avenues, cytokine stimulation induces a change in the expression
of HLA-B, in turn increases and changes the repertoire of
peptides detected.

HLA-B Expression Correlates With
Signature of Tumor Inflammation and T Cell
Infiltration in TCGA Lung Cancer Cohort
The tumor microenvironment (TME) is largely shaped by
immune cell infiltration into the tumor and cancer-related
inflammation as reviewed in (60, 61). In many cases, “cold”
tumors for which low levels of immune infiltration is observed
are associated with non-responsiveness to therapy and worse
prognosis (62–64). To test whether the expression level of HLA-
B is correlated with the inflammatory state of a tumor in clinical
samples, we examined the cancer genome atlas (TCGA) lung
cohort (n = 1,128). For each patient we calculated a tumor
inflammation signature (TIS) value based on the linear weighted
sum of eighteen genes (Supplementary Table 3) involved in
interferon activity, T cell and NK cell abundance, T cell
exhaustion and antigen presenting cell abundance (65). While
the TIS was positively correlated with the relative expression of
all three HLA I genes (Figures 7A–C), HLA-B was correlated
with the TIS score to a higher degree than either HLA-A or
-C (Figure 7D; HLA-B r = 0.76, HLA-A r = 0.63, HLA-C
r = 0.68). Ranking tumors based on their relative expression of
HLA-B compared to HLA-A allowed us to define two subclasses
of tumors expressing high HLA-B (denoted “HLA-B high”) and
low HLA-B (“HLA-B low”) (Figure 7E). Indeed, the HLA-B
high tumors had a significantly higher TIS score on average as
compared to the HLA-B low cohort (Figure 7F; Mann-Whitney
∗∗∗∗p < 0.0001). This suggests that tumor samples with a higher
relative expression of HLA-B also had increased expression of
inflammation and immune infiltration markers.
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FIGURE 6 | Different protein repertoires presented following stimulation. The presented peptides from (A) PDE4D, (B) IFIT2, (C) HNRNPU, and (D) EIF4A1 are shown

aligned to their position on the protein sequence. Only the portion of the protein which had peptides identified is shown (start and end position are marked) and

peptides are colored by the cluster which they were assigned to. The peptides identified in unstimulated cells (UT) are presented above the protein while the peptides

identified in stimulated cells (T+I) are below.

FIGURE 7 | Tumor Inflammation Signature correlates with relative levels of HLA-B across patients. (A–C) The relative expression of HLA-A (A), HLA-B (B), or HLA-C

(C) (normalized to the mean expression for that gene in the cohort and log2 transformed) is plotted against the tumor inflammation signature (TIS). The Pearson

correlation (r) for these two parameters across the full TCGA lung cohort (n = 1,128) is displayed on the graph. (D) The Pearson correlation for the analysis presented

in (A–C). Upper and lower limits on the correlation are indicated by bars. (E) The relative expression of HLA-A is plotted against HLA-B for the cohort (n = 1,128). Each

sample was ranked by the difference between HLA-B and HLA-A expression and the 10% at the top (HLA-B high) and bottom (HLA-B low) of the ranking are marked

in red and blue, respectively. (F) The mean TIS score for the two subsets defined in E are displayed. The HLA-B high subset has a significantly higher average TIS

score (Mann Whitney, two tailed T-test, ****p < 0.0001; whiskers indicate min and max).

DISCUSSION

Inflammation is a key hallmark of the TME (66) which is
mediated by a mixture of cytokines that are secreted into the
tumor environment both by tumor and immune cells. TNFα
and IFNγ, for example, were shown to have both promoting and
inhibitory effects on tumor growth (67–69). Aside from the role

of IFNγ in immunoediting, thereby preventing primary tumor
formation (70), defects in both IFN (71) and TNF (72) signaling
have been associated with increased cancer risk. Furthermore,
TNFα and IFNγ in combination induce tumor cell senesce (73)
mediated by CD4+ T cells (Th1) (73, 74). Importantly, IFNγ

and TNFα were previously shown to function synergistically
to modulate the expression levels of the antigen processing
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and presentation machinery (43–47). This pro-inflammatory
cytokine stimulation has been shown to induce expression of
the immunoproteasome and modulate the relative expression
of the different HLA genes, particularly HLA-B (38–41, 75–
78). Recent studies examined the effects of IFNγ stimulation
on the generation of specific antigenic peptides (37, 79–81) or
the general immunopeptide landscape (36, 42), suggesting that
IFNγ induced proteasome-mediated changes to the presented
peptidome. However, the HLA-B mediated effects on the
immunopeptidome were first described in the work by Komov
et al. (42). They found that there are more HLA-B presented
peptides following cytokine stimulation and that the proteasome-
cleaved peptide supply of ligands for loading were not the
limiting factor in presentation. Rather, they could show that the
changes they observed to the immunopeptidome of MCF7 cells
were driven by a limited availability of HLA complexes. However,
this analysis was done in response to IFNγ and IFNβ stimulation
which served to increase HLA expression.

In this work, we wished to examine the changes in the
immunopeptidome landscape under conditions mimicking the
pro-inflammatory signals that are likely to exist in the TME. To
that end, we stimulated lung cancer cells, A549, with TNFα and
IFNγ and analyzed the changes in both the cellular proteome and
HLA presentation. Our analysis revealed that HLA-B becomes
the dominant haplotype of these cells after stimulation, whereas
in unstimulated A549 cells it is hardly expressed. This, in turn,
causes the sequence motif of the presented peptides to change
dramatically, in accordance with the binding constrains of the
different HLA haplotypes. Likewise, a shift in cleavage properties
of the presented peptides is observed, with an increase in
chymotryptic-like peptides. In addition, the protein repertoire
represented by the immunopeptidome is both altered and
diversified following TNFα and IFNγ stimulation. Importantly,
we show that these changes are not driven by changes in the
relative abundances of the cellular proteins but rather as an
outcome of the change in the antigen presentation machinery.
This further supports the finding that peptides are not the
limiting factor in determining the immunopeptide repertoire
(42) and additional factors operate to select and actively regulate
the peptides that are presented on cellular HLA molecules.

Taken together, our results support the notion that a
cellular mechanism for induction of HLA-B upon inflammatory
stimulation exists (36, 38–42), and suggest that such modulation
of the immunopeptidome may also be important in clinical
settings. In contrast to previously reported determinants of
the immunopeptidome under steady state conditions, this
study presents a mechanism whereby the peptidome can be
modulated in both proteome- dependent and independent
manners. These results emphasize the importance of studying
the immunopeptidome in a context as close as possible to the
physiological conditions in order to improve the identification
of presented peptides. Indeed, in recent years, much effort
has been put into identifying peptides specifically presented
by cancerous cells, in an effort to elicit anti-tumor immunity.
Many of the methods employed to identify these tumor-specific
peptides, or neo-antigens, rely on expanding tumor biopsies
in culture, thereby removing the cells from their physiological

contexts. TNFα and IFNγ are often expressed in the tumors’
microenvironment and these signals may be altered when tumor
cells are passaged in culture. Our results suggest that the state
of inflammation in the microenvironment of a tumor affects the
relative expression of the three different HLA genes. Our TCGA
analysis strengthens the relevance of our findings to human lung
cancer and its TME. This suggests that inter-patient variation in
the TME will, in turn, modulate the patient’s immunopeptidome
repertoire and may affect tumor host-interactions. Further study
is needed to ascertain the relative antigenicity of the differentially
presented peptides, as well as their ability to elicit an immune
response via tumor infiltrating lymphocytes. Nevertheless, we
show that the full extent of cis and trans-regulation of the HLA
immunopeptidome depends on both cell autonomous processes
as well as exogenous. Revealing the principles underlying
selection and presentation of peptides, across various cellular
conditions may harness novel opportunities for shaping and
modulating antigenicity in cancer therapy.

MATERIALS AND METHODS

Cell Culture and Treatments
A549 cells were grown in DMEM supplemented with 10%
fetal bovine serum, 1% Penicillin/streptomycin and L-glutamine
(2mM) (Biological industries) at 37◦C with 5% CO2. Cells
were treated with 400 U∗mL-1 TNFα and/or 200 U∗mL-1 IFNγ

(peprotech) for the indicated amount of time.

Antibodies
For flow cytometry, HLA complexes were stained with PE
conjugated W6/32 pan-HLA (Biolegend, BLG-311405). For
Western Blots the following antibodies were used: β5 (Enzo |
bml-pw8895 | lot # 04181631 | 1:1000), β5i (Abcam | ab180606
| lot # F1716 | 1:1000), β1i (Sigma Aldrich | SAB4200270
| lot # GR3191928-2 | 1:1000), beta actin (ThermoFisher
Scientific|MA5-15739 | lot # 32253598 | 1:1000), Goat anti-Mouse
IgG-HRP (Jackson | JIR 115-035), Goat anti-Rabbit IgG-HRP
(Jackson | JIR 111-035).

Western Blot Analysis
About 2.5 × 106 A549 cells per condition were collected
and flash frozen. Cells were then suspended in radio-
immunoprecipitation assay buffer (150mM NaCl, 1.0% NP-
40, 0.5% sodium deoxycholate, 0.1% SDS, 50mM Tris, pH
8.0), incubated on ice for 30min and centrifuged at 21,130 rcf
for 30min. Protein concentrations were measured using the
Coomassie Plus (Bradford) Assay Kit (Pierce, ThermoFisher
Scientific). For each condition, 20 µg of cellular lysate was
incubated at 95◦C for 5min, then separated by SDS-PAGE
and transferred to nitrocellulose membranes (iBlot Transfer
Stack, ThermoFisher Scientific) which were incubated with
the indicated primary antibodies, followed by the appropriate
secondary antibody conjugated to horseradish peroxidase.
Enhanced chemi-luminescence was acquired in a Molecular
Imager Gel Doc XR System (BioRad).
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RT-PCR Analysis
RNA was extracted and purified from cells using the Direct-
Zol RNA kit (Zymo Research, R2052). mRNA levels were
ascertained by real time quantitative PCR using SYBR Green
(Kapa Biosystems) and primers as outlined in Table 1.

Proteasome Cleavage Reporter Assay
A549 cells, stimulated with TNFα and IFNγ for the indicated
times, were collected and flash frozen. Frozen cells were re-
suspended in lysis buffer (25mM sucrose, 50mM TRIS pH
7.4, 5mM MgCl2, 0.5mM EDTA, 2mM ATP, 1mM DTT).
Lysates were passed 10 times through a 27G needle, incubated
on ice for 15min and the centrifuged at 21130rcf for 10min.
Protein concentrations were measured using the Coomassie Plus
(Bradford) Assay Kit (Pierce, ThermoFisher Scientific). 20 µg
of cellular lysate was incubated with 0.1mM suc-LLVY-AMC or
ac-PAL-AMC (Biotest) as per protocol and fluorescence levels
were measured over time using a BioTek Synergy H1 plate
reader (Ex: 360 nm, Em: 460 nm). The background protease
activity was determined for each condition from an identically
prepared sample with the addition of Mg132 proteasome
inhibitor (0.04mM; Calbiochem). Each time point measurement
was performed in three independent biological replicates.

Cell Viability Assay
To measure cells’ ATP content, 7500 A549 cells were seeded
per well in a 384-well plate. After 36 h, including stimulation
with TNFα and IFNγ for the indicated time, a half volume of
the CellTiter-Glo reagent (Promega) was added to each well
following (82). The reagent was incubated with the cells for
10min per the manufacturer’s protocol and then luminescence
levels were measured over time using BioTek Synergy H1
plate reader.

Immunoaffinity Purification of the HLA
Complexes
Membranal HLA (mHLA) class I molecules were purified
similarly to Hunt et al. (83) with modifications as described in
Milner et al. (84) with minor modifications, from about 5 ×

108 cells. The cells were lysed with 0.25% sodium deoxycholate,
0.2mM iodoacetamide, 1mM EDTA, 1:200 Protease Inhibitors
Cocktail (Sigma Aldrich, St. Louis, MO), 1mM PMSF and 1%
octyl-β-D glucopyranoside (Sigma Aldrich) in PBS at 4◦C for 1 h.
Cell extracts were cleared by centrifugation for 45min, at 48,000 g
and at 4◦C. The HLA class I molecules were immunoaffinity
purified using the W6/32 mAb bound to protein A-resin beads
(Genscript, Piscataway, NJ) as in Barnea et al. (85). The HLA
molecules with their bound peptides were eluted from the affinity

TABLE 1 | Quantitative real-time PCR primer sequences.

Gene Forward Reverse

HLA-A TGGAGCTGTGATCACTGGAG GGGCACTGTCACTGCTTG

HLA-B AGACACAGATCTCCAAGACCAACA CGTCGCAGCCGTACATCCT

HLA-C CTGTCCTAGCTGTCCTAGGAGCT CCTGGGCACTGTTGCTGG

GAPDH CAACGGATTTGGTCGTATTG GATGACAAGCTTCCCGTTCT

column with five column volumes of 1% TFA. The eluted
HLA class I proteins and the released peptides were loaded on
disposable C18 columns (Harvard Apparatus, Holliston,MA) and
the peptides fraction was recovered with 30% acetonitrile in 0.1%
TFA, as in Milner et al. (84). The peptides were dried using
vacuum centrifugation, reconstituted with 100 µl of 0.1% TFA,
reloaded on C18 StageTips, prepared as in Rappsilber et al. (86),
eluted with 80% acetonitrile, dried and reconstituted with 0.1%
formic acid for the LC-MS/MS analysis.

Identification of HLA Peptides
The LC-MS/MS analyses of the HLA and the tryptic peptides
were performed with a Q-Exactive-Plus mass spectrometer
fitted with either with Easy nLC 1000 capillary HPLC
(Thermo-Fisher Scientific) or with Ultimate 3000 RSLC nano-
capillary UHPLC (Thermo-Fisher Scientific). The reversed phase
chromatographies were performed with home-made 30 cm long,
75µm inner diameter, packed with 3.5µm silica ReproSil-
Pur C18-AQ resin (Dr. Maisch GmbH, Ammerbuch-Entringen,
Germany), as in Ishihama et al. (87). The HLA peptides were
eluted using a linear gradient of 5–28% of acetonitrile in 0.1%
formic acid, at a flow rate of 0.15 µl/min for 2 h. Data was
acquired using a data-dependent “top 10” method, fragmenting
the peptides by higher-energy collisional dissociation (HCD).
Full scan MS spectra were acquired at a resolution of 70,000
at 200 m/z with a target value of 3 × 106 ions. Fragmented
masses were accumulated to AGC (automatic gain control) target
value of 105 with a maximum injection time of 100ms. No
fragmentation was attempted for HLA peptides with unassigned
precursor charge states. The peptide match option was set to
Preferred. The normalized collision energy was set to 25% and
MS/MS resolution was 17,500 at 200 m/z. Fragmented m/z values
were dynamically excluded from further selection for 20 s.

Cellular Lysates Preparation
Tryptic Digest: Pellets were suspended in 5% SDS, pH 7.5, then
heated for 3min at 95◦C. Lysates were then sonicated for 6
cycles (Diagnode). Protein concentration was measured using a
BCA assay. Proteins were reduced using 5mM dithiothreitol and
alkylated using iodoacetamide. Samples were then loaded onto an
S-trap column (Protifi, USA) and subjected to in-solution tryptic
digestion according to the manufacturer’s protocol. The samples
were vacuum dried and stored in−80◦C until analysis.

Identification of Cellular Proteins
Tryptic Digests: ULC/MS grade solvents were used for all
chromatographic steps. Each sample was loaded using split-
less nano-Ultra Performance Liquid Chromatography (10 kpsi
nanoAcquity; Waters, Milford, MA, USA). The mobile phase
was: A) H2O + 0.1% formic acid and B) acetonitrile + 0.1%
formic acid. Desalting of the samples was performed online
using a reversed-phase Symmetry C18 trapping column (180µm
internal diameter, 20mm length, 5µm particle size; Waters).
The peptides were then separated using a HSS T3 nano-column
(75µm internal diameter, 250mm length, 1.8µm particle size;
Waters) at 0.35 µL/min. Peptides were eluted from the column
into the mass spectrometer using the following gradient: 4–30%B
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in 163min, 30–90%B in 5min, maintained at 90% for 5min
and then back to initial conditions. The nanoUPLC was coupled
online through a nanoESI emitter (10µm tip; New Objective;
Woburn, MA, USA) to a quadrupole orbitrap mass spectrometer
(Q Exactive Plus, Thermo Scientific) using a FlexIon nanospray
apparatus (Thermo). Data was acquired in data dependent
acquisition (DDA) mode, using a Top10 method. MS1 resolution
was set to 70,000 (at 400 m/z), mass range of 300–1,650m/z,
AGC of 3e6 and maximum injection time was set to 50ms.
MS2 resolution was set to 17,500, quadrupole isolation 1.7 m/z,
AGC of 1e5, dynamic exclusion of 60 s and maximum injection
time of 60ms.

Mass Spectrometry Data Analysis
Peptides were identified and quantified by the MaxQuant
software [version 1.6.0.16 (51)] with the following parameters:
unspecific enzyme, minimum peptide length for unspecific
search of 8, maximum peptide length for unspecific search of
25, and match between runs enabled. Methionine oxidation
and N-acetylation were accepted as variable modifications. A
false discovery rate (FDR) of 1% was applied for peptide
identification. For the analysis of tryptic digests, the MaxQuant
default parameters were set. Masses were searched against
the human proteome database from the Uniprot/Swiss-Prot
(last update on 2.2018). The MS proteomics data of the
cellular proteome and immunopeptidome have been deposited
to the ProteomeXchange Consortium via the PRIDE (88)
partner repository with the dataset identifiers PXD009935
and PXD009936.

Label-Free Quantitation and
Bioinformatics Analysis
Using Python 3.6, peptides identified though MaxQuant (50)
were initially filtered to remove reverse sequences and known
MS contaminants. We identified 7,524 unique peptides across
both treatments with an average of 3,508 and 6,816 peptides
in the untreated and stimulated triplicate samples, respectively.
To reduce ambiguity, we allowed peptides that had at least
two valid LFQ intensities out of three independent biological
replicates in at least one treatment group, and included razor
peptides, which belong to a unique MaxQuant “protein group.”
Following this filtering step we were left with an average of
3,444 peptides in the untreated samples and 6,582 peptides
in the samples. Finally, missing peptide intensity values were
imputed to randomly chosen values from a normal distribution.
These intensity values are then used as a relative measure of
peptide abundance. Following the generation of the lists of
identified peptides, the third triplicate of untreated cells (UT-
3) was excluded from the analysis, as fewer than half the
number of peptides were identified in UT-3 as compared to UT-
1 and −2. In addition, the sample was poorly correlated with
the other samples in the triplicate. Protein abundances were
inferred from peptide intensities using MaxQuant. For graphical
representation, intensities were log transformed, and zero
intensity were imputed to a random value chosen from a normal
distribution of 0.3 the standard deviation and downshifted 1.8
standard deviations (89). Peptide and protein intensities are

reported as themedian intensity across the triplicate (or duplicate
for UT) unless noted otherwise.

The identified HLA peptides were subject to Gibbs clustering
using the default parameters for MHC I peptides (90, 91).
The haplotype of A549 cells was previously reported in (92).
Identified peptides were assigned to their best fit MHC using
NetMHC 4.0 for the HLA haplotypes, which are present in A549
and for which information is available in NetMHC (57, 58).
The sequence logo of peptides bound by each A549 haplotype
were determined through Gibbs clustering of all of the peptides
annotated as binding to that haplotype in the IEDB ]Immune
Epitope Database and Analysis Resource; (93)]. All motifs (with
the exception of Figure 5A) were generated by Seq2Logo 2 using
default parameters except for the logo type, which was set to
Shannon (94). The comparisonmotif in Figure 5Awas generated
using Two Sample logo (95). Default parameter were used with
the exception of bonferroni correction which was enabled.

Standard scores were calculated as follows:

z =
xstimulated − xunstimulated
√

σ
2
stimulated

nstimualted
+

σ
2
unstimulated

nunstimualted

Whole protein turnover rates were those published by Larance et
al. (55). They are presented as log2 transformed ratios between
the abundance following treatment with cycloheximide (CHX)
and DMSO. Because CHX inhibits protein synthesis, general
protein abundance decreases resulting in negative fold changes.
Protein abundance data was mined from the GeneCards Suite
Human Integrated Protein Expression Database (HIPED) (56),
unifying protein abundance data from 4 proteomics sources,
ProteomicsDB, MOPED, PaxDb, and MaxQB. We utilized
HIPED’s integrated proteomes of 69 normal human anatomical
entities (tissues, in-vivo cells and body fluids). The mined protein
abundance PPM (parts per million) values were normalized by
log10 transformation. All statistical analyses were performed
using either GraphPad Prism or MATLAB 2016a. Pathway
enrichment was done using Panther 13.1 [Protein Analysis
Through Evolutionary Relationships (54)] using the GO-slim
biological processes annotation collection. Protein schematics
were made using the start and end position of the presented
peptides aligned to the protein sequence. Only peptides with a
log10 transformed intensity >6 are displayed.

TCGA Data Analysis
TCGA data was mined using the xenaPython package in Python
3.6. The results shown in this analysis are in whole or part
based upon data generated by the TCGA Research Network:
http://cancergenome.nih.gov/. The full lung carcinoma cohort
(both lung adenocarcinoma [LUAD] and lung squamous cell
carcinoma [LUSC] designations) was used for this study. One
sample (TCGA-63-A5MY-01) was removed as an outlier because
the expression of HLA-B was more than 3 interquartile ranges
below quartile Q1 leaving a total of n = 1,128 samples for
the study. The Tumor Inflammation Signature, or TIS was
calculated as the weighted linear sum of the expression levels of
18 genes (Supplementary Table 3) as developed by Ayer et al.
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and Danaher et al. (65, 96). Expression levels of the three HLA
genes were normalized to the mean expression for that gene in
the cohort and log2 transformed.
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Supplementary Figure 1 | Flow Cytometry analysis measuring the levels of HLA

on the surface of A549 cells after treatment with TNFα and IFNγ for the indicated

times. (A) Histograms of the fluorescence intensity corresponding to the surface

expression of HLA I using PE-W6/32 (PE: HLA) and (B) the mean fluorescence

intensity (MFI) are displayed. (C) Whole cell lysate from cells stimulated with TNFα

and IFNγ for the indicated times was separated on SDS-PAGE and analyzed by

western blot probed with the indicated antibodies. Actin is displayed as a loading

control. (D) Cells stimulated with TNFα and IFNγ for the indicated times were

incubated with CellTiter-Glo reagent and the measured luminescence levels were

plotted (y-axis, ATP levels). Each dot represents a biological repeat of the

experiment. There was no significant difference between 0 h of stimulation and

24 h (p = 0.1314).

Supplementary Figure 2 | (A) Scatter plot of the HLA presented peptide

abundances (Log10) between each pairwise combination of samples. Along the

diagonal of the graph, the histogram of abundance values (before imputation) for

each of the samples.

Supplementary Figure 3 | (A,B) The median intensity of each peptide across

three (x-axis) or two (y-axis) replicates from the unstimulated samples (UT; A) or

TNFα and IFNγ (T+I) stimulated samples (B). A red dashed line is plotted at X = Y.

(C) The mean intensity of the peptide population from two or three replicates of

the unstimulated samples (UT) or TNFα and IFNγ (T+I) stimulated cells. The bars

in red represent the analysis conditions chosen for the manuscript.

Supplementary Figure 4 | (A) Volcano plot of the proteins identified in

unstimulated cells (UT) or cells stimulated with TNFα + IFNγ (T+I). Ratios are Log2

normalized and P-values are Benjamini Hochberg FDR corrected and –Log10

transformed. Proteins enriched in T+I are marked in red, enriched in UT are

marked in blue and those which contain a presented peptide are marked in a

black outline. (B) Significantly enriched or underrepresented biological processes

in the protein subset increased in abundance after stimulation with TNFα + IFNγ

(2-fold increase or greater in abundance). All the processes passed an FDR cut-off

of 0.05 and the log2 transformed normalized enrichment score is presented for

each process.

Supplementary Figure 5 | (A) A Venn diagram showing the number and

percentage of proteins identified only in the cellular proteome, only in the

presented proteome or shared by both.

Supplementary Figure 6 | (A,B) For either unstimulated (UT) cells (A) or cells

stimulated with TNFα + IFNγ (T+I, B) the abundance of each protein in the cell

was plotted against the number of unique peptides presented from that protein in

stimulated cells. The red line indicates a moving average with a window of 50.

Pearson correlation (r) is displayed for each plot. (C,D) For either unstimulated

(UT) cells (C) or cells stimulated with TNFα + IFNγ (T+I, D) the abundance of each

protein in the cell was plotted against the number of unique peptides presented

from that protein and normalized to the protein length. The red line indicates a

moving average with a window of 50. Pearson correlation (r) is displayed for each

plot. (E) The ratio of cellular protein abundance between stimulation with TNFα +

IFNγ (T+I) and unstimulated (UT) is plotted against the ratio in intensity for the

presentation of each protein (Log2 transformed ratios). Proteins which increased

by 2-fold or more in cellular abundance and increased in presented abundance

are marked in red (n = 110). The Pearson correlation (r) for this subset is displayed

on the graph (r = 0.325). (F) The ratios in Figure 3E are ranked and the ranks are

plotted against one another (Log2 transformed ratios, Pearson correlation (r) is

displayed on the graph, n = 1239).

Supplementary Figure 7 | (A) Schematic overlay of the HLA transcripts with the

differential regions used to design primers. (B) The motifs of peptides known to

bind to each of the five A549 haplotypes.

Supplementary Figure 8 | (A) The Kullbakck-Leibler distance for Gibbs

clustering performed with between 1 and 5 different clusters. (B) The percent of

peptides in each cluster predicted to bind to one of the A549 haplotypes. (C) The

log2 transformed ratio of protein abundance in the cell between stimulation with

TNFα + IFNγ (T+I) and unstimulated (UT) for the parent proteins of the peptides in

each cluster (line at median, box for the second and third quartile, lines from min

to max) (D) Protein abundance was inferred from the GeneCards Suite Human

Integrated Protein Expression Database (HIPED) (56) and applied to the subset of

proteins in each Gibbs cluster.

Supplementary Figure 9 | (A) The percentage of the peptides contained in each

of the 4 clusters which are peptides unique to a given protein. (B) The average

number of peptides presented from a given protein (HLA sampling density) for

each of the four clusters across both unstimulated (UT) or stimulated (T+I)

conditions (∗∗p = 0.0018, ∗∗∗∗p < 0.0001; error bars indicate 95% confidence

intervals on the mean). (C) The rolling average of the HLA sampling density (y axis)

ranked by the abundance of the protein in the cellular lysate (x axis; rolling

window = 50). Peptides were subdivided by both treatment condition and cluster.

(D) The Pearson correlation between the HLA sampling density of a given protein

and the abundance of that protein in the cell for each cluster and treatment

combination (error bars indicate 95% confidence intervals on the correlation).

(E) Each HLA presented peptide was ranked based on the change in intensity

between TNFα and IFNγ stimulated and unstimulated cells (X axis is shared with

G). Each protein was assigned a standard score (Z score) based on the

significance of the deviation. (F) The amino acid at the second position of each

peptide (X-axis is shared with G) is marked with a blue (A, V), red (E) or black

(remaining amino acids). (G) The percentage of peptides which have a glutamic

acid at their second position was calculated using a rolling window of 200

peptides across peptides ranked based on the change in intensity between TNFα

and IFNγ stimulated and unstimulated cells.

Supplementary Table 1 | The proteins identified in WCE in untreated cells and

following cytokine stimulation along with fold change in abundance and corrected

P-value.

Supplementary Table 2 | The peptides identified in the immunopeptidome of

untreated and stimulated cells.

Supplementary Table 3 | The eighteen genes and weights used to calculate the

TIS score.
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