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ABBREVIATIONS 

 

CTL, cytotoxic T lymphocyte  

HRSV, human respiratory syncytial virus 

Vrnap, viral RNA polymerase  

ER, endoplasmic reticulum  

HLA, human leukocyte antigen 

HPLC, high performance liquid chromatography 

MS, mass spectrometry 

IFN-, Interferon-gamma 
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SUMMARY 

The cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells 

requires previous recognition of short viral antigenic peptides bound to HLA class I 

molecules that are exposed on the surface of infected cells. The CTL response is 

critical for the clearance of human respiratory syncytial virus (HRSV) infection. In this 

study, naturally processed viral human leukocyte antigen (HLA) class I ligands were 

identified with mass spectrometry analysis of complex HLA-bound peptide pools 

isolated from large amounts of HRSV-infected cells. Acute antiviral T cell response 

characterization showed that viral transcription determines both the immunoprevalence 

and immunodominance of the HLA class I response to HRSV. These findings have 

clear implications for antiviral vaccine design. 
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INTRODUCTION 

Human respiratory syncytial virus (HRSV) (1), a member of the 

Paramyxoviridae family of the Mononegavirales order, is the single most important 

cause of serious lower respiratory tract illnesses, such as pneumonia and bronchiolitis 

in infants and young children (2-4). This virus infects people of all ages, and although 

mild infections are usually reported in healthy adults, HRSV poses a severe health risk 

for immunocompromised (5, 6) or elderly individuals (7, 8). Despite the immune 

mechanisms involved in HRSV disease and protection are not completely understood, 

it is known that the cytotoxic T lymphocytes (CTLs) are required to clear virus-infected 

cells (9). Like for all paramyxoviruses, the single-stranded, negative-sense RNA 

genome of this enveloped virus is sequentially transcribed by viral RNA polymerase 

(vRNAP) into separate mRNAs, which are involved in transcription initiation at a single 

3′ promoter. Additionally, this process involves a sequential start-stop-restart 

mechanism (1). The vRNAP occasionally fails to reinitiate the downstream mRNA at 

each stop-restart junction, which leads to the loss of transcription of further 

downstream genes (1, 10); hence, there is an mRNA synthesis gradient that is 

inversely proportional to the distance of the gene from the 3′ end of the genome. Thus, 

the promoter-distal genes are expressed less efficiently (10, 11). 

Translated viral mRNA yields proteins that can be further degraded by 

proteasomes (12), and in some cases, by other cytosolic proteases (13), which 

generate an extremely diverse pool of peptides both in sequence and length that can 

be translocated to the endoplasmic reticulum (ER) lumen by transporters associated 

with antigen processing. Among them, only a small fraction with a correct size or NH2-

terminally extended precursors can be used for antigen presentation by direct ligand 

binding to human leukocyte antigen (HLA) class I molecules or by precursor editing 

and customization by ER-resident aminopeptidase activity (14), respectively, to yield 

the final viral ligand. Finally the stable trimolecular peptide-HLA-β2-microglobulin 
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complexes are transported to the infected cell membrane where they can be 

recognized by antiviral T lymphocytes, an event that will end in the killing of the 

infected cell (15). 

The general antigen processing and presentation rules that are applicable to 

individual viruses or families of viruses are largely unknown, despite the importance of 

the different elements of the HLA class I antigen processing and presentation pathway 

(e.g., ubiquitination, proteasome, cytosolic and ER-resident proteases, TAP, 

chaperones, and HLA peptide binding). Additionally, the TCR repertoire or regulatory T 

cells, among others, have been described in multiple studies that contribute to the 

antigen processing and presentation of individual epitopes (e.g., influenza A and HIV, 

which are summarized in (16)). We are interested in the identification of viral ligands 

that are presented by several frequent HLA class I molecules in HRSV-infected cells to 

analyze how the immune system selects natural HLA class I ligands and epitopes. 

Immunoproteomics analysis of peptide pools from HRSV-infected cells has led to the 

identification of several new naturally processed ligands from different viral proteins 

that together with ligands identified in previous studies (17, 18), define both the nature 

and hierarchy of the T cell class I specific response against HRSV. 
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EXPERIMENTAL PROCEDURES 

Mice. 

HLA-A*0201 (19) -B*0702 (20), and -B*2705 (21) transgenic mice were bred in 

our animal facilities in strict accordance with the recommendations of the Guide for the 

Care and Use of Laboratory Animals of the Spanish “Comisión Nacional de 

Bioseguridad” of the “Ministerio de Medio Ambiente y Medio Rural y Marino” 

(accreditation number 28079-34A). The protocol was approved by the Committee on 

Animal Experiment Ethics of the Institute of Health “Carlos III” (Permit Number: PI-283). 

All of the procedures were performed under sodium pentobarbital anesthesia, and all 

efforts were made to minimize suffering. 

Cell lines.   

The mouse RMA-S cell lines (TAP negative) that stably express HLA-A*0201 

(22), -B*0702 (20), or -B*2705 (23) have been previously described. All cell lines were 

cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum and 5 µM β-

mercaptoethanol.  

Synthetic peptides. 

Peptides were synthesized in a peptide synthesizer (model 433A; Applied 

Biosystems, Foster City, CA) and purified by reversed-phase HPLC. The correct 

molecular mass of the peptides was established by MALDI-TOF MS, and their correct 

composition was determined by quadrupole ion trap microHPLC.  

HRSV infection of the human JY Epstein-Barr-transformed cell line. 

JY cells (HLA-A*0201, -B*0702, and -C*0702) were incubated with the HRSV 

Long strain and assayed at different times for the presence of HRSV antigens using 
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flow cytometry, as previously described with either Epstein-Barr-transformed human B-

cell lines (24) or other cell lines (17) to obtain a persistently infected JY-cell line that 

synthesized HRSV viral proteins and secreted infectious virus several months after 

infection. 

HLA-bound peptide isolation. 

HLA-bound peptides were isolated from 4x1010 healthy or HRSV-infected JY 

cells. The cells were lysed in 1% CHAPS (Sigma), 20 mM Tris/HCl buffer, and 150 mM 

NaCl, pH 7.5 in the presence of a protease inhibitor cocktail. The HLA-peptide 

complexes were isolated via affinity chromatography from the soluble cell extract 

fraction with the following mAbs, which were used sequentially: PA2.1 (anti-HLA-A2) 

(25), ME1 (anti-HLA-B7) (26), and W6/32 (specific for a monomorphic pan-HLA class I 

determinant) (27) (Figure S1), as previously described (28). The HLA-bound peptides 

were eluted at 4ºC with 0.1% aqueous trifluoroacetic acid (TFA), separated from the 

large subunits, and concentrated with a Centricon 3 column (Amicon, Beverly, MA), 

exactly as previously described (17). 

Electrospray-ion trap mass spectrometry analysis. 

Peptide mixtures recovered after the ultra-filtration step were concentrated 

using Micro-Tip reversed-phase columns (C18, 200 µl, Harvard Apparatus, Holliston, 

MA) (17). Each C18 tip was equilibrated with 80% acetonitrile in 0.1% TFA, washed with 

0.1% TFA, and then loaded with the peptide mixture. The tip was then washed with an 

additional volume of 0.1% TFA, and the peptides were eluted with 80% acetonitrile in 

0.1% TFA. The peptide samples were then concentrated to approximately 20 µl using 

vacuum centrifugation (17, 28). 

The HLA class I peptides that were immunoprecipitated with each HLA-specific 

mAb were analyzed by µLC-MS/MS using an Orbitrap XL mass spectrometer (Thermo 
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Scientific, San Jose, CA) that was fitted with a capillary HPLC column (Eksigent, 

Dublin, CA) (17, 28). The peptides were resolved on homemade Reprosil C18-Aqua 

capillary columns (75 micron ID) (29) with a 7-40% acetonitrile gradient for 2 h in the 

presence of 0.1% formic acid. The 7 most intense masses that exhibited single-, 

double-, and triple-charge states were selected for fragmentation from each full mass 

spectrum with CID.  

Database searches. 

Sequest 3.31 (Thermo-Fisher) (30) was used for peak-list generation from the 

µLC-MS/MS data. The peaks were identified using Proteome Discoverer 1.0 SP1 

(Thermo-Fisher) and Bioworks Browser 3.3.1 SP1 (Thermo-Fisher) software programs 

(30) as well as the human and virus parts of the NCBI database (Jan 2013), which 

included 656,486 proteins. The search was not limited by enzymatic specificity; the 

peptide tolerance was set to 0.005 Da, and the fragment ion tolerance was set to 0.5 

Da (17, 31). This search was not limited by any methodological bias (e.g., individual 

protein selection or HLA consensus scoring algorithm use). The identified peptides 

were selected if the following criteria were met: Sequest Xcorr >1.4 for singly, >2.2 for 

doubly, and >2.9 for triply charged peptides; P(pep) less than 1 x 10-3; and a mass 

accuracy of 0.005 Da (17, 31). When the MS/MS spectra fit more than one peptide, 

only the highest scoring peptide was analyzed. No peptides were found in a search of 

a reversed database. The purpose of the filtering criteria was to identify candidate 

HRSV peptide from the MS/MS scans for further manual inspection to determine 

whether the MS/MS fragment ion fingerprints matched the identified peptide 

sequences. Additionally, the corresponding synthetic peptide was made and its 

MS/MS spectrum was used to confirm the assigned sequence.  
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HLA/peptide stability assays. 

The following synthetic peptides were used as controls in the HLA/complex 

stability assays: VACV A10L688-696 (ILDRIITNA, HLA-A*02-restricted) (28), A34R82-90 

(LPRPDTRHL, HLA-B*07-restricted) (32), and CMV pp657-15 (RCPEMISVL, HLA-Cw1-

restricted) (33). The different RMA-S transfectant cells were incubated at 26°C for 16 h. 

This allowed for empty HLA class I molecule expression (without antigenic peptide) at 

the cell membrane that was stable at 26°C but not at 37°C. The cells were washed and 

incubated for 2 h at 26°C with various peptide concentrations in medium without FBS. 

The cells were maintained at 37°C for an additional 2 h and then collected for flow 

cytometry. This method allowed for the empty HLA class I molecules to become 

internalized, and thus we were able to discriminate between bound or unbound 

peptides. HLA expression levels were measured using monoclonal PA2.1 (anti-HLA-

A*02) and ME1 (anti-HLA-B*07) Abs, as previously described (34). Data were acquired 

on a FACSCanto flow cytometer (BD Biosciences, San Jose, CA, USA) and analyzed 

using BD FACSDiva software, version 6 (BD Bioscience). The cells that were 

incubated without peptides exhibited peak fluorescence intensities close to the 

background staining that were observed with the secondary Ab alone. The 

fluorescence index was calculated for each time point as the ratio of the mean peak 

channel fluorescence of the sample to that of the control incubated without peptide. 

Peptide binding was also expressed as EC50, which is the molar concentration of the 

peptide at 50% of the maximum fluorescence obtained in a concentration range of 

0.01-200 µM. 

IFN--secreting CD8+ cell detection by ELISPOT. 

ELISPOT assays were performed as previously described (35) to detect 

antigen-specific CD8+ T cell activation. Briefly, purified rat anti-mouse IFN- antibody 

(clone R4-6A2, BD Pharmingen, San Diego, CA, USA) was coated on 96-well 
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MultiScreen HTS HA plates (Millipore, Billerica, MA, USA). The plates were incubated 

overnight at room temperature and were blocked with medium that was supplemented 

with 10% fetal bovine serum for 2 h at 37ºC. Duplicate cultures of erythrocyte-depleted 

spleen cells were prepared from HLA class I-transgenic mice at 7 days (acute 

response) post i.n. infection with 1x106 pfu of Long strain HRSV at different dilutions 

with 10-5 M peptide. The plates were incubated overnight at 37ºC in a 5% CO2 

atmosphere and were then washed with PBS-T (PBS 0.05% Tween-20). The plate 

wells were incubated for 2 h at room temperature with biotinylated anti-mouse IFN- 

mAb clone XMG1.2 (BD Pharmingen, San Diego, CA, USA), washed with PBS-T, and 

incubated for 1 h at room temperature with horseradish peroxidase-labeled 

streptavidin. The plates were additionally washed before adding 3,3’-diaminobenzidine 

substrate (Sigma, St. Louis, MO, USA) in 50 mM Tris buffer pH 7.4 that contained 

0.015% hydrogen peroxide. To enumerate the IFN responses, spots were counted 

and wells were photographed using a Leica EZ4 HD stereo microscope and LAS EZ 

software (Leica Microsystems, Germany). Additionally, the percentage of CD8+ cells 

was determined after staining spleen cells with FITC-conjugated anti-mouse CD8 

antibody (clone KT15, Proimmune, England, UK). Events were acquired on a 

FACSCanto flow cytometer (BD Biosciences, San Jose, CA, USA) and analyzed using 

BD FACSDiva software, version 6 (BD Bioscience). 

Statistical analysis. 

To analyze statistical significance of HLA/peptide stability and ELISPOT assays   

unpaired Student’s t-tests were used. In addition, Chi-square test was used to analyze 

the distribution of HLA class I ligands. P values < 0.05 were considered to be 

statistically significant.  
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RESULTS AND DISCUSSION 

Physiological processing generated three different viral HLA-A*02:01 

ligands in human HRSV-infected cells. 

The HLA-A*02:01-bound peptide pool was isolated from large numbers of either 

healthy or HRSV-infected human cells. These peptide mixtures were subsequently 

separated by reversed-phase HPLC and analyzed using mass spectrometry. Using 

bioinformatic tools, three fragmentation spectra present in the HRSV-infected HLA-

bound peptide pool, but absent in the control uninfected pool (data not shown), were 

resolved with high confidence parameters as HRSV protein peptides (Table 1). 

Additionally, a human proteome database search failed to identify any of these spectra 

as human protein fragments, suggesting the viral origin of these peptides. The first ion 

peak, with an m/z of 511.8, was assigned to the viral amino acid sequence 

KLIHLTNAL, which spans residues 33-41 of the HRSV NS1 protein (Fig. 1, upper 

panel) that was previously identified (36). Moreover, two different ion peaks at m/z 

525.3 and 681.9 were assigned to other viral peptides. These ion peaks corresponded 

to the TQFPHFSSV (Fig. 1, medium panel) and RLLEITREFSV (Fig. 1, lower panel) 

peptides, which span residues 315-323 of the N protein and 229-239 of the F protein, 

respectively. Virtually all fragments with a relative abundance higher than 10% of the 

maximum signal of the three MS/MS spectra were assigned as daughter ions of the 

putative peptidic sequences (Fig. 1). This theoretical assignment was confirmed by 

MS/MS spectrum identification of the corresponding synthetic peptide (Fig. 1). 

Therefore, these results indicate that a total of three HLA-A*02 ligands were 

endogenously processed and presented in the HRSV-infected cells. 

Two viral HLA-B*07:02 ligands were endogenously processed in the 

human HRSV-infected cells. 
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Similarly to HLA-A*02:01, the HLA-B*07:02-bound peptide pool was isolated 

from either healthy or HRSV-infected cells. Two fragmentation spectra present in the 

HLA-B*07:02-bound peptide pool, but absent in the control uninfected pool (data not 

shown), were also resolved as HRSV protein peptides (Table 1). The human proteome 

database search failed to identify these spectra as human protein fragments, 

suggesting the viral origin of these HLA-B*07-bound peptides. The first ion peak, with 

an m/z of 471.8, was assigned to the viral amino acid sequence NPKASLLSL, which 

spans residues 306-314 of the HRSV N protein (Fig. 2, upper panel) as previously 

identified (37). This indicated that antigen processing of this protein can generate 

several viral ligands bound to two different HLA class I molecules. The second ion 

peak, at m/z 665.9, was assigned to the RPLSLETTITSL peptide sequence (Fig. 2, 

lower panel), which spans residues 19-30 of the NS2 protein. Figure 3 shows that all 

significant fragments of these two MS/MS spectra were assigned as daughter ions of 

the putative peptide sequences. As for the HLA-A*02:01 ligands, these assignments 

were confirmed by MS/MS spectrum identification of the corresponding synthetic 

peptide (Fig. 2). Collectively, these results indicate that a similar number of ligands 

were endogenously processed and presented by HLA-A*02:01 or -B*07:02 class I 

molecules in the same HRSV-infected cells. 

HRSV ligand binding affinity for the A*02:01 molecule. 

The classical anchor motifs for HLA-A*02:01 binding, Leu or Met at position 2 

(P2) and the aliphatic C-terminal residues (SYFPEITHI database: 

http://www.syfpeithi.de (38)), were present in two of the three detected HRSV viral 

ligands (Table 1). In contrast, the N315-323 ligand presented a Gln at P2; however, it was 

co-immunoprecipitated with an HLA-A*02-specific mAb and thus could be an unusual 

HLA-A*02-restricted ligand. To confirm that HLA-A*02:01 was the HLA class I molecule 

that presented these three ligands, HLA/peptide complex stability assays were 

performed using TAP-deficient RMA-S cells that were transfected with the HLA-

http://www.syfpeithi.de/
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A*02:01 molecule (Fig. 3A). The three viral ligands were bound to the HLA-A*02:01 

class I molecules with EC50 values in the range commonly found among other natural 

high-affinity ligands (Fig. 3B). These data confirm that all ligands detected in HRSV-

infected cells were presented in association with the HLA-A*02:01 molecule. 

The HRSV virus ligand binding affinity for the B*07:02 molecule. 

Both peptides identified as bound to HLA-B*07:02 have known anchor motifs for 

binding to this HLA class I molecule, which are Pro at P2 and Leu at the C-terminal 

residues (SYFPEITHI database (38)) (Table 1). To confirm that HLA-B*07:02 is the 

HLA class I molecule that presents these ligands, HLA/peptide complex stability assays 

were performed using TAP-deficient RMA-S cells transfected with the HLA-B*07:02 

molecule (Fig. 3C). Both viral ligands were bound to HLA-B*07:02 class I molecules 

with EC50 values similar to those of other natural high-affinity ligands (Fig. 3D). These 

data confirm that the ligands detected in the HRSV-infected cells were presented in 

association with the B*07:02 molecule. In summary, HLA-A*02:01 and B*07:02 class I 

molecules can both bind high-affinity ligands derived from different HRSV proteins in 

infected cells. 

HRSV-infected cells endogenously presented a viral ligand by HLA class I 

molecules that was different from HLA-A*02:01 and -B*07:02. 

We sequentially immunoprecipitated HLA class I molecules (Fig. S1) to 

investigate the possibility of new viral HLA class I ligands that were presented by other 

HLA class I molecules expressed in the same HRSV-infected cells. One fragmentation 

spectrum present in the peptide HRSV-infected W6/32-bound pool, but absent in its 

control uninfected pool, was also resolved as a HRSV proteome peptide (Table 1). 

Furthermore, the human proteome database searches also failed to identify this 

spectrum as a human protein fragment, suggesting the viral origin of this HLA-bound 

peptide. The ion peak, with an m/z of 514.3, was assigned to the viral amino acid 
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sequence FISSGLYKL, which spans residues 25-33 of the HRSV G protein. Figure 4 

shows the experimentally obtained MS/MS spectra and the respective assignments. 

The putative peptide sequence was confirmed by MS/MS spectrum identification of the 

corresponding synthetic peptide (Fig. 4). The haplotype of the cell line used in the 

immunoprecipitation was HLA-A*02:01, -B*07:02, and -C*07:02, and thus the G 25-33 

peptide was most likely a HLA-C*07:02 ligand. 

The immunoprevalence of the HLA class I response was limited by the 

HRSV viral transcription group. 

Using the same experimental approach, we previously identified nine HLA-

B*27:05 ligands (17) and one HLA-C*04:01 (18) ligand that along with the six different 

HLA class I ligands identified in the current report, raised the total number of HRSV 

HLA class I ligands to 16 and belonged to 9 of the 11 viral proteins that are encoded by 

the HRSV genome in human virus-infected cells (Table 2 and Figure 5). In two (HLA-

B*07:02 and -B*27:05) of the five HLA class I presenting molecules of these ligands 

(HLA-A*02:01, -B*07:02, -B*27:05, -C*04:01, and -C*07:07), a very restricted anchor 

motif has been identified; thereby, the presence of Pro or Arg at P2 is almost 

mandatory for the HLA-B*07:02 or -B*27:05 ligands, respectively (SYFPEITHI 

Database (38)). Thus, the viral proteins with a high content for both of these amino 

acids are candidates for the HLA-B*07:02 and -B*27:05-restricted ligand source (Table 

3). However, no correlation between the number of the HLA ligands detected in the 

immunoproteomics analysis and both Pro and Arg content or viral protein size was 

found (Table 3). Therefore, neither the content in residues used by anchor motif amino 

acids nor the HRSV protein size were relevant in the HLA-B*07:02 and -B*27:05 class I 

viral ligand selection. 

The HRSV genome contains 10 genes in the following order: 3′ NS1-NS2-N-P-

M-SH-G-F-M2/M2-2-L (Fig. 5). These genes are transcribed sequentially as a mRNA 
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synthesis gradient that is inversely proportional to the distance of the gene from the 3′ 

end of the genome and thus the promoter-proximal genes are expressed more 

efficiently (11). As for the other viruses that belong to the Mononegavirales order, the 

HRSV genome has been divided into three different mRNA expression level groups 

(10): 3‘ core protein genes, intermediate genes, and 5‘ large polymerase gene, which 

involve 26% (NS1, NS2, N, P, and M proteins), 25% (SH, G, F, M2, and M2-2 proteins) 

and 49% (L protein) of the viral proteome, respectively (Fig. 5). Thus, the analysis of 

the 16 natural HRSV ligands identified by mass spectrometry, which are bound to five 

different HLA class I molecules that cover approximately 70% of the human population, 

shows that most (75%) of the viral ligands detected were included in proteins encoded 

by the 3‘ group, whereas only 3 (19%) and 1 (6%) of them were integrated in proteins 

encoded by intermediate and 5‘ groups, respectively (Fig. 5). This 12:3:1 distribution of 

HLA class I ligands found in the immunoproteomics analysis is statistically different to 

an expected random distribution (4:4:8) along the viral proteome (P value = 0.0083). 

Therefore, the proteins to which HLA class I antigen processing and presentation are 

addressed to, that is, the immunoprevalence of the HLA class I response, are limited 

by the HRSV transcription groups.  

The recognition of eleven HLA-A*02:01, -B*07:02, and -B*27:05 ligands by 

specific T cells in HRSV-infected HLA transgenic mice. 

To study in vivo the physiological relevance of the identified HLA class I viral 

ligands, which were identified in the current and the previous (17) studies, different 

HLA class I- A*02:01, -B*07:02, or -B*27:05 transgenic mice were infected with HRSV. 

Later, a physiological measurement of the functional ex vivo activity of T cells against 

the different HLA class I viral ligands identified using mass spectrometry was carried 

out. Spleen cells that specifically recognized cells that were pulsed with the three HLA-

A*02:01 (Fig. 6A), the two -B*07:02 (Fig. 6B), and six of the nine -B*27:05 (Fig. 6C) 

peptide corresponding viral ligands indicated that the HLA ligands were either HLA-
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A*02:01, -B*07:02, or -B*27:05-restricted epitopes, respectively, and that they were 

simultaneously recognized as part of the acute response to HRSV. The N315-323 ligand 

was the immunodominant epitope in the HLA-A*02:01 response (Fig. 6A), whereas 

either the two HLA-B*07:02 or six -B*27:05 epitopes that were detected displayed IFN-


+ responses of the same order (Fig. 6B and C). A lack of specific elements, such as 

ERAP2 (39), or differences between the human and murine antigen processing 

machineries (e.g., tapasin or the proteasomes) (40) could explain the absence of the T 

cell recognition of the three HRSV ligands in the HLA-B*27 transgenic mouse model. 

The viral transcription groups also determined the immunodominance of 

the T cell class I-specific response. 

In each HLA transgenic model, the individual epitopes, which included the 3’ 

group ligands, showed higher specific IFN-+-secreting responses than the 

corresponding intermediate and 5’ group’s ligands (Fig. 6). Quantification of the overall 

T cell responses specific for the 11 epitopes presented by the 3 different HLA class I 

molecules showed that most (98%, 100%, and 88% for HLA-A*02:01, -B*07:02, and -

B*27:05, respectively, and 91% for the overall T cell response) of the specific analyzed 

IFN-+ responses were restricted by ligands from proteins that were encoded by the 3‘ 

group. Additionally, this represented only about a quarter of the viral proteome, and a 

minor 6% and 3% of the CD8+ responses that were against epitopes encoded by 

proteins from the intermediate and 5‘ groups, respectively (Fig. 5). Therefore, the T cell 

class I specific response hierarchy against HRSV was dependent on the viral 

transcription group. In contrast, the T cell responses to the different HRSV ligands were 

not related to the HLA binding affinities (Fig. 7A) nor is there relationship between the 

HLA binding affinity of the different HRSV ligands and the viral transcription (Fig. 7B). 

These results are in agreement with several observations. For instance, a 

ligand from the C protein included in the 3‘ transcription group of the paramyxo-
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measles virus was the HLA class I immunodominant epitope, and the other three 

ligands from the F and H proteins, which were included in the intermediate group or M 

protein of the 3‘ group, were subdominant (41). Interestingly, when using bioinformatic 

tools to analyze the distribution of the epitopes that are described in the immune 

databases, a different study showed that in HCV, a virus whose entire proteome is 

made from a single polyprotein that is translated from a single ORF, the HLA class I 

epitopes are not distributed along the viral proteome; however, they are concentrated 

in the 3’-terminal core protein, which is encoded by a single ORF (42). Altogether, both 

of these studies, along with our current report, indicate that with small RNA viruses, the 

transcriptional regulation or the translational control are the major characteristics that 

limit and determine both the nature and the hierarchy of the T cell class I specific 

response: the immunoprevalence and immunodominance. Thus, further studies using 

immunoproteomics that identify the natural epitopes from infected cells in other 

different virus families are needed to determine the extension of this immune 

mechanism. Additionally, in two bioinformatic analyses, the cellular proteins encoded 

by highly abundant mRNA were found to be the much more likely sources of 

endogenous HLA class I ligands, but the poorly transcribed mRNA also generated a 

significant fraction of these ligands (43, 44). In contrast, analyses of gene expression 

and their autologous HLA ligand densities from approximately three-hundred proteins 

showed no correlation between mRNA expression and the abundance of renal 

carcinoma-associated ligands (45).  

Although multiple factors determine both the nature and the immunodominance 

of the T cell responses of individual epitopes, some studies have shown the importance 

of some viral elements such as temporal virus protein expression. Thus, specific T cell 

recognition of early but not late viral antigens was found both for herpesvirus (46) and 

some vaccinia virus strains (47, 48).  However, although a tight correlation between 

onset of protein expression and vaccinia virus epitope display has been found, no 
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connection between immunodominance and epitope abundance was described for this 

poxvirus (49). 

Interestingly, the prevalence of HLA class I ligands (Fig. 7C) encoded by the 3’ 

transcription group mRNAs correlated with the respective size of each viral protein, 

with the immune response being mainly focused on the N protein. Therefore, the 

immunoprevalence in the 3’ transcription group was related to the size of the encoded 

protein. Additionally, the IFN-+ responses were also mainly focused against the N 

protein (Fig. 7C). These data from HLA-transgenic mice with H-2b backgrounds are in 

agreement with a previous study that used peripheral blood mononuclear cells from 

normal adults stimulated with HRSV in vitro, which identified that the N protein was the 

most strongly recognized protein by specific T cells from different donors (50). In 

contrast, the HRSV response in BALB/c mice, which was analyzed using an 

overlapping peptide library spanning the HRSV proteome, was targeted almost 

exclusively against CD8+ T cell epitopes restricted by H-2Kd from F and M2-1 proteins 

included in the intermediate group (51). The use of different background strains could 

explain the dissimilar T cell responses identified in mice, and these data suggest that 

humanized H-2b strains resemble more the human HRSV-specific HLA class I 

responses than the BALB/c mouse model.  

In summary, the antigen processing and presentation of HLA class I epitopes 

from HRSV was modulated at two levels. First, by a transcription gradient, and second, 

by the protein size, which resulted from highly transcribed mRNAs. A confirmation of 

our data could be achieved with the immunologic study of a recombinant HRSV in 

which the different transcription groups of wild type virus were exchanged (e.g., 5’-IM-3’ 

or IM-5’-3’). However, a previous study proved that although gene rearrangement 

increases mRNA levels for 3’ proximal genes, the replication efficiency of the 

recombinant virus with only two or three individual rearranged genes was also 
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decreased in a 10- or 100-fold range, respectively (52), rendering this approach quite 

unfeasible.  

Finally, our data have evident implications for the analysis of the CTL response 

as well as for vaccine development, not only for HRSV and other Paramyxoviridae 

family members, but also for the other Mononegavirales order viruses that share the 

same genomic structure, although future and extensive studies with different viruses of 

this order are needed. For example first, multiple HRSV studies (approximately 60%), 

which targeted individual viral genes, have identified MHC class I epitopes and CD8+ T 

cell responses both in humans and in mice against individual viral proteins encoded by 

poorly transcribed mRNAs (Immunoepitope Database) that would be less relevant in 

the natural HLA class I response. Thus, a bioinformatic analysis of the distribution of 

known HRSV epitopes from databases, such as the one reported for HCV (42), could 

mask the real contribution of the different viral proteins to the T cell immune response. 

Second, HLA class I immunologic efforts must be prioritized to study the most 

significant larger proteins encoded by highly transcribed mRNAs not only for the 

Paramyxoviridae family but also with other virus of the Mononegavirales order, such as 

Rhabdovirus and Filovirus. This approach would be of great relevance for virulent viral 

diseases, such as the diseases caused by Ebola or Marburg viruses, for which 

biosafety level IV is required to work with infected cells, but where the 

immunoproteomics study of the 3’ core protein genes group in a non-dangerous 

recombinant virus for example, would yield the most relevant immunological 

information. 
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FIGURE LEGENDS 

Figure 1. The identification of three HLA-A*02:01 ligands in HRSV-infected cell 

extracts by mass spectrometry.  

MS/MS fragmentation spectra, which were obtained from quadrupole ion trap mass 

spectrometry, at ion peaks of m/z 511.8 (upper left panel), m/z 525.3 (medium left 

panel), and m/z 681.9 (lower left panel) were observed in the HRSV-infected cell 

extracts and their corresponding synthetic peptides (right panels). The vertical axis 

represents the relative abundance of the parental ion and each fragmentation ion 

detected. The horizontal axis corresponds to the m/z region in which significant 

daughter ions were detected. Ions generated by fragmentation are detailed, and the 

sequence deduced from the indicated fragments is shown in the upper box of each 

panel. 

Figure 2. The identification of two HLA-B*07:02 ligands in HRSV-infected cell 

extracts by mass spectrometry.  

MS/MS fragmentation spectra, which were obtained from quadrupole ion trap mass 

spectrometry at ion peaks of m/z 471.8 (upper left panel) and m/z 665.9 (lower left 

panel) were observed in HRSV-infected cell extracts and their corresponding synthetic 

peptides (right panels). The axes are as described in Figure 1. 

Figure 3. HLA-A*02:01 or -B*07:02 stabilization assay with synthetic HRSV 

ligands. 

The stability of HLA-A*02:01/peptide (A and C panels) or HLA-B*07:02/peptide (B and 

D panels) complexes on the surface of RMA-S transfectant cells was measured by flow 

cytometry. The indicated peptides were used at a 200 µM concentration (A and B 

panels). The mAb used were PA2.1 (A and C panels) or ME1 (B and D panels). B 

Panel: The titration curves for synthetic HRSV F229-239 (circles), N315-323 (squares), and 
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NS133-41 (triangles) peptides with HLA-A*02:01 are depicted. The CMV pp65294-302 (solid 

line) and VACV A10L688-696 (diamonds) peptides were used as negative and positive 

controls, respectively. D Panel: The titration curves for synthetic HRSV N306-314 

(squares) and NS219-30 (triangles) peptides with HLA-B*07:02 are depicted. The CMV 

pp65294-302 (solid line) and VACV A34R82-90 (diamonds) peptides were used as negative 

and positive controls, respectively. The results, calculated as the fluorescence index (A 

and C panels) or EC50 values ± SD (B and D panel) are the mean values of three or 

four independent experiments. Significant P values: *, P < 0.05; **, P < 0.01; ***, P 

<0.001. 

Figure 4. The identification of one HLA ligand in HRSV-infected cell extracts by 

mass spectrometry.  

MS/MS fragmentation spectra, which were obtained from quadrupole ion trap mass 

spectrometry, at an ion peak of m/z 514.3 (left panel) were observed in HRSV-infected 

cell extracts and in the corresponding synthetic peptide (right panel). The axes are as 

described in Figure 1. 

Figure 5. HLA class I ligands identified by mass spectrometry and their relation 

with the HRSV genome, mRNA, proteome, and T cell immune response. 

Schematic representation of the HRSV genome indicating the three different 

transcription groups (3´, intermediate or IM, and 5´) encoding viral proteome separated 

by dotted lines. The abbreviations used for viral proteins were NS1 (Non-structural 

protein 1), NS2 (Non-structural protein 2), N (Nucleoprotein), P (Phosphoprotein), M 

(Matrix protein), SH (Small hydrophobic protein), G (Glycoprotein), F (Fusion protein), 

M2-2 (Matrix protein 2), and L (Polymerase). For each transcription group the number 

of HLA class I ligands identified by mass spectrometry in this report and studies (17, 

18) together with the number of HLA class I epitopes identified in this report are shown 

in a, the transcription gradient, which was measured as the mRNA molar ratio 
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percentage (11, 53, 54) is shown in b, the proteome percentage is shown in c, the HLA 

class I ligand percentage from the total is shown in d, the CTL epitope percentage from 

the total is shown in e, and the total IFN-+ immune response percentage detected in 

the HLA class I-transgenic mice is shown in f. 

Figure 6. The immunogenicity of HRSV-derived HLA-A*02:01, -B*07:02, and –

B*27:05-restricted peptides in the HLA class I transgenic mice. 

HLA-A*02:01 (A panel), -B*07:02 (B panel), or -B*27:05 (C panel) target cells that were 

pre-pulsed with the indicated HRSV-synthetic peptides were analyzed by ELISPOT for 

CD8+ T cell activation with HRSV-specific splenocytes obtained from HLA-A*02:01, -

B*07:02, or -B*27:05 transgenic mice immunized for 7 days (acute response) post 

HRSV infection. The results are calculated as the mean of three to nine independent 

experiments ± SD. Significant P values: *, P < 0.05; **, and P < 0.01 versus negative 

control (black asterisks) or versus N315-323 or N184-194 ligands (white asterisks) are in the 

upper and lower panels, respectively. The transcription group was defined as indicated 

in Figure 5 and is shown on the left box beside the respective HLA class I epitope. 

Figure 7. Comparison between HLA binding affinities and T cell responses for 

the HLA class I ligands identified by mass spectrometry. 

A panel: the HLA binding affinity versus immunogenicity for the synthetic HRSV ligands 

was represented as Dot plot that represents the HLA binding affinity, which is 

expressed as EC50 from Table 2, versus the INF+ T cell response from Figure 6. B 

panel: The HLA binding affinities, which are expressed as EC50 from Table 2, of the 

different synthetic HRSV ligands that are grouped by transcriptional groups defined as 

indicated in Figure 5 are shown. C panel: Dot plot represents the number of HLA class 

I ligands versus the size of the five HRSV proteins that were encoded by the 3’ 

transcription group. 
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Table 1. 

Summary of the HRSV ligands detected with MS/MS analysis in the HRSV persistently 

infected JY cells 

 

Experimental 
mass a 

ΔMass b m/z Sequence c Protein Position HLA class I 

1362.77 0.2 2+ RLLEITREFSV Fusion (F) protein 229-239 HLA-A*02:01 

1049.50 0.3 1+ TQFPHFSSV Nucleoprotein (N) 315-323 HLA-A*02:01 

1049.50 0.3 2+ TQFPHFSSV Nucleoprotein (N) 315-323 HLA-A*02:01 

1022.64 -0.8 1+ KLIHLTNAL d 
Non-structural 
protein 1 (NS1) 

33-41 HLA-A*02:01 

1022.64 0.0 2+ KLIHLTNAL 
Non-structural 
protein 1 (NS1) 

33-41 HLA-A*02:01 

942.56 -1.6 1+ NPKASLLSL d Nucleoprotein (N) 306-314 HLA-B*07:02 

942.56 -1.3 2+ NPKASLLSL Nucleoprotein (N) 306-314 HLA-B*07:02 

1330.76 -1.9 2+ RPLSLETTITSL 
Non-structural 
protein 2 (NS2) 

19-30 HLA-B*07:02 

1027.58 -0.9 2+ FISSGLYKL Glycoprotein (G) 25-33  HLA-C*07:02 

 

a The monoisotopic ion mass in amu. 

b The difference between the nominal and experimentally detected monoisotopic ions in 

ppm. 

c The anchor motifs are underlined. 

d Previously described in (36) or (37). 
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Table 2. 

Summary of the HRSV ligands identified with MS/MS analysis in persistently HRSV-

infected cells 

 

 

 

a From (17) 

b From (18) 

c HLA peptide binding is expressed as EC50 (the molar concentration of the peptide at 

50% of the maximum fluorescence obtained in a concentration range of 0.01-200 µM), 

and its standard deviation. 

  

Protein Position Sequence HLA I 
HLA Binding 

Affinity c 

Fusion (F) protein 229-239 RLLEITREFSV HLA-A*02:01 1 ± 1 

Nucleoprotein (N) 315-323 TQFPHFSSV HLA-A*02:01 0.4 ± 0.5 

Non-structural protein 1 
(NS1) 

33-41 KLIHLTNAL HLA-A*02:01 8 ± 1 

Nucleoprotein (N) 306-314 NPKASLLSL HLA-B*07:02 12 ± 6 

Non-structural protein 2 
(NS2) 

19-30 RPLSLETTITSL HLA-B*07:02 9 ± 6 

Glycoprotein (G) 25-33 FISSGLYKL HLA-C*07:02 N.D. 

Nucleoprotein (N) 100–109 HRQDINGKEM a HLA-B*27:05 26 ± 5 

Nucleoprotein (N) 184–194 RRANNVLKNEM a HLA-B*27:05 10 ± 1 

Nucleoprotein (N) 195–205 KRYKGLLPKDI a HLA-B*27:05 5 ± 2 

Matrix (M) 76–84 SRSALLAQM a HLA-B*27:05 9 ± 2 

Matrix (M) 169–177 VRNKDLNTL a HLA-B*27:05 12 ± 5 

Polymerase (L) 2089–2097 GRNEVFSNK a HLA-B*27:05 18 ± 3 

Matrix 2-22k (M2) 150–159 KRLPADVLKK a HLA-B*27:05 9 ± 2 

Phosphoprotein (P) 198–208 LRNEESEKMAK a HLA-B*27:05 14 ± 3 

Non-structural protein 2 
(NS2) 

37–45 HRFIYLINH a HLA-B*27:05 11 ± 4 

Matrix (M) 188-198 AITNAKII b HLA-C*04:01 16 ± 12 



31 
 

 

Table 3 

Distribution of the Pro and Arg content and HLA-B*07:02 and -B*27:05 ligands in the 

HRSV proteome 

Long 
strain 

protein a 

Number of  
     Pro b             Arg c 

Number of 
Pro + Arg d 

% of  
Pro + Arg e 

Number of 
residues f 

% of 
proteome g 

Ligands h 

      
  

      

L 68 81 149 46.0 2165 49.2 1 

F 16 18 34 10.5 573 13 0 

G 26 2 28 8.6 186 4.2 0 

N 9 16 25 7.7 391 8.9 4 

P 12 11 23 7.1 219 5 1 

M 12 6 18 5.6 256 5.8 2 

M2 6 11 17 5.2 195 4.4 1 

NS2 7 6 13 4.0 124 2.8 2 

M2-2 5 3 8 2.5 90 2 0 

NS1 4 1 5 1.5 138 3.1 0 

SH 2 2 4 1.2 65 1.5 0 

 

a Abbreviations: L (Polymerase), F (Fusion protein), G (Attachment protein), N 
(Nucleoprotein), P (Phosphoprotein), M (Matrix protein), M2-22k (Matrix protein 22k), 
NS2 (Non-structural protein 2), M2-2 (Matrix protein 2), NS1 (Non-structural protein 1), 
and SH (Small hydrophobic protein). 

b The number of Pro in the viral proteome. 

c The number of Arg in the viral proteome. 

d The number of Pro + Arg in the viral proteome. 

e The percentage of Pro + Arg included in the viral proteome. 

f The total residue number. 

g The residue number for each protein/ total residue number, as a percentage. 

h The number of HLA-B*07:02 and –B*27:05 ligands in HRSV. 
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