722 research outputs found

    Highlight für Forscher: Forschungsschiff ... [SONNE]

    Get PDF
    Über 70 Prozent der Erdoberfläche sind von Ozeanen bedeckt. Sie sind ein zentraler Bestandteil unseres Ökosystems, das noch viele Geheimnisse birgt. Die Erforschung dieses Systems ist Aufgabe der deutschen Forschungsflotte. Ihr neues Flaggschiff: die neue "Sonne

    Reproducing kernel Hilbert spaces and variable metric algorithms in PDE constrained shape optimisation

    Get PDF
    In this paper we investigate and compare different gradient algorithms designed for the domain expression of the shape derivative. Our main focus is to examine the usefulness of kernel reproducing Hilbert spaces for PDE constrained shape optimisation problems. We show that radial kernels provide convenient formulas for the shape gradient that can be efficiently used in numerical simulations. The shape gradients associated with radial kernels depend on a so called smoothing parameter that allows a smoothness adjustment of the shape during the optimisation process. Besides, this smoothing parameter can be used to modify the movement of the shape. The theoretical findings are verified in a number of numerical experiments

    Functional A Posteriori Error Estimation for Stationary Reaction-Convection-Diffusion Problems

    Get PDF
    A functional type a posteriori error estimator for the finite element discretization of the stationary reaction-convection-diffusion equation is derived. In case of dominant convection, the solution for this class of problems typically exhibits boundary layers and shock-front like areas with steep gradients. This renders the accurate numerical solution very demanding and appropriate techniques for the adaptive resolution of regions with large approximation errors are crucial. Functional error estimators as derived here contain no mesh-dependent constants and provide guaranteed error bounds for any conforming approximation. To evaluate the error estimator, a minimization problem is solved which does not require any Galerkin orthogonality or any specific properties of the employed approximation space. Based on a set of numerical examples, we assess the performance of the new estimator. It is observed that it exhibits a good efficiency also with convection-dominated problem setting

    Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations

    Get PDF
    Stochastic Galerkin methods for non-affine coefficient representations are known to cause major difficulties from theoretical and numerical points of view. In this work, an adaptive Galerkin FE method for linear parametric PDEs with lognormal coefficients discretized in Hermite chaos polynomials is derived. It employs problem-adapted function spaces to ensure solvability of the variational formulation. The inherently high computational complexity of the parametric operator is made tractable by using hierarchical tensor representations. For this, a new tensor train format of the lognormal coefficient is derived and verified numerically. The central novelty is the derivation of a reliable residual-based a posteriori error estimator. This can be regarded as a unique feature of stochastic Galerkin methods. It allows for an adaptive algorithm to steer the refinements of the physical mesh and the anisotropic Wiener chaos polynomial degrees. For the evaluation of the error estimator to become feasible, a numerically efficient tensor format discretization is developed. Benchmark examples with unbounded lognormal coefficient fields illustrate the performance of the proposed Galerkin discretization and the fully adaptive algorithm

    Oxygen producing microscale spheres affect cell survival in conditions of oxygen-glucose deprivation in a cell specific manner: implications for cell transplantation

    Get PDF
    This study outlines the synthesis of microscale oxygen producing spheres, which, when used in conjunction with catalase, can raise the dissolved oxygen content of cell culture media for 16–20 hours. In conditions of oxygen and glucose deprivation, designed to mimic the graft environment in vivo, the spheres rescue SH-SY5Y cells and meschymal stem cells, showing that oxygen producing biomaterials may hold potential to improve the survival of cells post-transplantation

    Guaranteed quasi-error reduction of adaptive Galerkin FEM for parametric PDEs with lognormal coefficients

    Full text link
    Solving high-dimensional random parametric PDEs poses a challenging computational problem. It is well-known that numerical methods can greatly benefit from adaptive refinement algorithms, in particular when functional approximations in polynomials are computed as in stochastic Galerkin and stochastic collocations methods. This work investigates a residual based adaptive algorithm used to approximate the solution of the stationary diffusion equation with lognormal coefficients. It is known that the refinement procedure is reliable, but the theoretical convergence of the scheme for this class of unbounded coefficients remains a challenging open question. This paper advances the theoretical results by providing a quasi-error reduction results for the adaptive solution of the lognormal stationary diffusion problem. A computational example supports the theoretical statement

    An Eulerian approach to the regularized JKO scheme with low-rank tensor decompositions for Bayesian inversion

    Get PDF
    The possibility of using the Eulerian discretization for the problem of modelling high dimensional distributions and sampling, is studied. The problem is posed as a minimization problem over the space of probability measures with respect to the Wasserstein distance and solved with the entropy-regularized JKO scheme. Each proximal step can be formulated as a fixed-point equation and solved with accelerated methods, such as Anderson's. The usage of the low-rank Tensor Train format allows to overcome the curse of dimensionality, i.e. the exponential growth of degrees of freedom with dimension, inherent to Eulerian approaches. The resulting method requires only pointwise computations of the unnormalized posterior and is, in particular, gradient-free. Fixed Eulerian grid allows to employ a caching strategy, significally reducing the expensive evaluations of the posterior. When the Eulerian model of the target distribution is fitted, the passage back to the Lagrangian perspective can also be made, allowing to approximately sample from the distribution. We test our method both for synthetic target distributions and particular Bayesian inverse problems and report comparable or better performance than the baseline Metropolis-Hastings MCMC with the same amount of resources. Finally, the fitted model can be modified to facilitate the solution of certain associated problems, which we demonstrate by fitting an importance distribution for a particular quantity of interest. We release our code at https://github.com/viviaxenov/rJKOtt

    Robust equilibration a posteriori error estimation for convection-diffusion-reaction problems

    Get PDF
    We study a posteriori error estimates for convection-diffusion-reaction problems with possibly dominating convection or reaction and inhomogeneous boundary conditions. For the conforming FEM discretisation with streamline diffusion stabilisation (SDM), we derive robust and efficient error estimators based on the reconstruction of equilibrated fluxes in an admissible discrete subspace of H (div, Ω). Error estimators of this type have become popular recently since they provide guaranteed error bounds without further unknown constants. The estimators can be improved significantly by some postprocessing and divergence correction technique. For an extension of the energy norm by a dual norm of some part of the differential operator, complete independence from the coefficients of the problem is achieved. Numerical benchmarks illustrate the very good performance of the error estimators in the convection dominated and the singularly perturbed cases
    corecore