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Abstract
A domain decomposition approach for high-dimensional random partial differ-
ential equations exploiting the localization of random parameters is presented.
To obtain high efficiency, surrogate models in multielement representations
in the parameter space are constructed locally when possible. The method
makes use of a stochastic Galerkin finite element tearing interconnecting
dual-primal formulation of the underlying problem with localized representa-
tions of involved input random fields. Each local parameter space associated to
a subdomain is explored by a subdivision into regions where either the para-
metric surrogate accuracy can be trusted or where instead one has to resort to
Monte Carlo. A heuristic adaptive algorithm carries out a problem-dependent
hp-refinement in a stochastic multielement sense, anisotropically enlarging the
trusted surrogate region as far as possible. This results in an efficient global
parameter to solution sampling scheme making use of local parametric smooth-
ness exploration for the surrogate construction. Adequately structured problems
for this scheme occur naturally when uncertainties are defined on subdomains,
for example, in a multiphysics setting, or when the Karhunen–Loève expan-
sion of a random field can be localized. The efficiency of the proposed hybrid
technique is assessed with numerical benchmark problems illustrating the iden-
tification of trusted (possibly higher order) surrogate regions and nontrusted
sampling regions.

K E Y W O R D S

domain decomposition, FETI, nonsmooth elliptic partial differential equations, partial differential
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1 INTRODUCTION

In uncertainty quantification (UQ), numerical methods typically are either based on pointwise sampling, which is appli-
cable to quite general problems but rather inefficient, or they rely on (an often analytic) smoothness of the parameter
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F I G U R E 1 Left: Realization of composite material
A from Example 1; Right: Realization with multiple
separated inclusions of Example 2

to solution map with the parameters determining the randomness.1,2 However, in many science and engineering appli-
cations deviating from the common linear benchmark setting with smooth Karhunen–Loève random fields,3,4 higher
smoothness cannot be assumed globally in the parameter domain and physical space. This severely limits the use of
techniques that rely on sparsity of a nonlinear approximation.

As a prototypical application example, which is for instance of relevance in material science, we have in mind a matrix
composite material with random nonperiodic inclusions as depicted in Figure 1 (right). This setting exhibits discontinuities
in the parameter dependence, rendering it basically intractable to functional approximations with global basis functions
in parameter space as commonly used in stochastic Galerkin finite element method, stochastic collocation, and other
nonintrusive projection approaches.5-11 We note that in many applications, random composite materials are often ana-
lyzed by some type of homogenization or upscaling techniques.12-14 By contrast to this, the requirements of the method
developed in this article are determined by an engineering application which aims at analyzing the maximum principal
stresses in a glue layer. This quantity of interest, while being of a local nature, is used as a stability measure for the underly-
ing material and motivates the resolution of material imperfections which otherwise would get lost with homogenization
or upscaling techniques.

While Monte Carlo (MC) sampling and its modern variants, for example, multilevel (MLMC)3,15,16 and quasi-Monte
Carlo17 are widely applicable and robust with respect to stochastic dimensions, smoothness can only be exploited
to a limited extend, resulting in slow convergence in the number of samples. Nevertheless, for problems with low
parameter regularity, a sampling approach might seem the only option to pursue. It is a central aim of this work
to overcome this restriction as (computationally) beneficial as possible. Sampling approaches have been analyzed for
random material coefficients spatially being piecewise continuous in Reference 15 or essentially bounded in Refer-
ence 18. In both references, the approximation of the material coefficients (e.g., due to the discretization process) was
avoided, leaving out the effect of discontinuities not being resolved perfectly in the numerical framework, see Examples 1
and 2.

The first part of this article attempts to close this gap within the random framework inspired by Bonito et al.19 intro-
ducing a so-called p∗-condition. More precisely, given higher-order spatial integrability of (weak) derivates of the solution,
we are able to allow for an approximation of nonsmooth material coefficients in weaker norms such as LQ(Ω;Lq(D)) with
q<∞ in contrast to the case of q=∞ as in Reference 18. The discussion of the new theory in the context of MLMC is
open and is out of the scope of this article.

A notion not frequently used for this kind of problems is a localization of randomness, for example, by means of a
domain decomposition (DD) method as employed here. In fact, the guiding principle is to make the high-dimensional
problem more accessible by considering smaller physical domains, locally leading to a dependence on fewer relevant
random variables.

To achieve this, we rely on the well-known theory of DD techniques that are powerful for solving large-scale par-
tial differential equations (PDEs) based on parallel computing.20,21 A subclass of DD methods, also known as iterative
substructuring methods,20 is based on nonoverlapping subdomains which allows for two important features. First, it
turns out to be flexible and efficient in handling deterministic elliptic problems with large jumps in the coefficients,22-24

including extensions with adaptive coarse space techniques25,26 or with handling irregular domains.27 Second, it gives a
natural framework for decoupled problems useful in the localization of randomness. Nonoverlapping DD methods might
be classified based on the treatment of the interface solution compatibility. In primal methods such as the basic Schur
complement method20 or the balancing domain decomposition,28 the unique unknown interface solution is computed by
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enforcing the continuity constraint on the subdomain interfaces. Alternatively, in dual methods such constraints might
be handled via Lagrange multipliers, for example, yielding the classical finite element tearing and interconnecting
(FETI)29 class. A combination of these approaches leads to the concept of hybrid methods such as the finite element tear-
ing interconnecting dual-primal method (FETI-DP).25,27,30,31 The application of iterative substructuring methods in the
framework of random PDEs has been presented by several authors, mainly using a Karhunen–Loève expansion (KLE) to
model the material law relying on polynomial chaos expansions (PCE) in the arising approximation tasks. In References
32,33 the FETI-DP framework was applied to a random PDE based on a global (KLE) and a global PCE ansatz. This
approach however is limited by the global random dimension since no localization of randomness was applied. A first
localization approach was proposed in Reference 34 in the setting of the classical FETI method for two subdomains based
on a separate representation in canonical tensor format (CP) with iterative updating via an alternating Rayleigh–Ritz
method. From an approximation point of view the CP format is not closed35 and may introduce instabilities in the numeri-
cal scheme. No localization of the random input field was considered. To our knowledge the combination of a localization
of a KLE of a Gaussian random field with a substructuring method was first introduced in Reference 36. There, the Schur
complement method using several local PCEs to approximate the local smooth parametric Schur complement matrices
was applied to accelerate a global to local sampling process. A higher-order local PCE was needed to avoid losing the posi-
tive definiteness of the parametric Schur complement matrix. As those ideas inspired some aspects in our work, we give
more details and discussion in Example 4, Remark 7, and Section 4.2. During the development of this article, the work37

was published, which is based on the Schur complement method for the smooth KLE case for colored and white noise
using a reduced basis method.

With our developed method, we attempt to extend the localization approach to the FETI-DP method for random
fields that are nonsmooth in both the parameter and the physical space, which is the case with matrix composites with
uncertain shape or position of the inclusions. Up to the author’s knowledge this is the first application of FETI-DP to
the setting of local nonsmooth random fields. In the proposed method we rely on several local surrogates to accelerate
a global to local sampling stage. Due to the lack of regularity, the construction of surrogates of local operators is not
straightforward. In particular, a classical PCE is not suitable since it would grow too large to stay feasible in practice. To
overcome this severe obstacle, we introduce the concept of trust and no-trust regions for a prescribed error tolerance38

locally in which a highly efficient surrogate can be evaluated (“trusted”) or where one has to fall back to standard
pointwise sampling (“nontrusted”). Local surrogates can be generated in parallel and depend only on local random coor-
dinates. In order to get the largest gain from the construction, trust regions are required to cover as large an area as
possible of the parameter domain related to each subdomain. For this, we introduce a local generalized multielement dis-
cretization in the local parameter spaces for which an hp-adaptive refinement procedure based on error indicators is
presented.

The proposed hybrid local surrogate-based stochastic FETI-DP method allows for fast global sampling on the basis of
local smoothness exploitation by appropriate surrogates. We would like to point out that the presented method is a single
level method in terms of the physical discretization and might be used as an accelerated sampling emulator for modern
sampling schemes such as MLMC.

The article is structured as follows: The following section is devoted to the theoretic framework for nonsmooth random
PDEs. In particular we provide a new perturbation and convergence theory for a linear random model problem. Section 3
examines the construction of surrogate models, which are used locally in the proposed method. Special attention is paid
to generalized multielement PCEs and a partition of unity (PoU) interpolation in order to treat nonsmooth dependence,
leading to the notion of “trust zones.” The employed parametric DD method is derived in Section 4, resulting in the central
parametric FETI-DP method. Eventually, Section 5 demonstrates the accuracy and adaptive refinement behavior of the
hybrid sampling approach with several benchmark problems.

2 MODEL PROBLEM AND A PRIORI ESTIMATES

In this section, we introduce the random linear elliptic model problem used henceforth for the derivation of the proposed
DD method. Of particular interest is the effect of approximation errors of the coefficient, which is of particular rele-
vance for simulations with random data models. We examine conditions required for stability results of the approximate
solution, especially in the case of nonsmooth coefficients. A prototypical application we have in mind is the numerical
treatment of stochastic composite materials. This type of problem is much more involved than the frequently consid-
ered case of random PDEs with smooth data in UQs as, for example, presented in References 4,9,10,39,40, where the



1004 EIGEL and GRUHLKE

dependence on the countable (possibly infinite) parameter vector is analytic. Such a smooth dependence allows for the
derivation of best n-term approximations with optimal (exponential) convergence rates and, while still computationally
costly, the implementation of efficient numerical methods. We point out that this section is devoted to the theoretical
question of approximation of nonsmooth random fields. This should be applicable in a wider sense than to the parametric
DD we have in mind. In particular, the theory of MLMC could be enhanced with the introduced aspects.

For the reader mainly interested in the algorithmic aspects of the proposed hybrid sampling approach based on DD,
we suggest to only skim through this section to understand the examined model problem and the structure of the con-
sidered nonsmooth problems by the examples provided at the end. In Section 2.1, we introduce the model problem and
collect assumptions that are needed for the pathwise and Bochner space perturbation theory for nonsmooth random fields
examined in Section 2.2. The end of this section is devoted to examples that illustrate the challenges and motivate the
derived a priori theory.

2.1 Random PDE model

As model problem we consider a random linear PDE. Given a probability space (Ω, ,P), a Lipschitz domain D ⊂ Rd

for d= 2, 3, with Dirchlet and Neumann boundary segments Γ0,Γ1 ⊂ 𝜕D, s.t. 𝜕D = Γ0 ∪ Γ1, Γ1 ∩ Γ0 = ∅ and |Γ0| > 0.
Then, the stationary diffusion model equation reads pointwise for 𝜔 ∈ Ω a.e.

⎧⎪⎨⎪⎩
−div(A(x, 𝜔)∇u(x, 𝜔)) = f (x, 𝜔) in D,
nTA(x, 𝜔)∇u(x, 𝜔) = g(x, 𝜔) on Γ1,

u(x, 𝜔) = 0 on Γ0.

(1)

Here A denotes the diffusion field, f and g are source fields and n is the outer normal on Γ1 w.r.t. D. In the following,
we state pathwise and global assumptions in the setting of elliptic (pathwise) second-order PDEs. In the context of inte-
grability, we use lower case letters for spatial integrability and upper case letters for stochastic integrability, for example,
Lp(D) or LP(Ω).

(PA1) For a.e. x ∈D, 𝜔 ∈ Ω, the d× d matrix A(x, 𝜔) is symmetric and positive definite. Denote by 𝜆min/max(A(x, 𝜔)) the
smallest and largest eigenvalues of A(x, 𝜔) and define

𝜆min(A(., 𝜔)) ∶= ess inf
x∈D

𝜆min(A(x, 𝜔)), 𝜆max(A(., 𝜔)) ∶= ess sup
x∈D

𝜆max(A(x, 𝜔)).

Then there exist random variables c, c ∶ Ω → R such that there hold pathwise uniform bounds a.e. in 𝜔,

0 < c(𝜔) ≤ 𝜆min(A(., 𝜔)) ≤ 𝜆max(A(., 𝜔)) ≤ c(𝜔) <∞. (2)

(PA2) The random variable c(𝜔)−1 is an element of LR(Ω) for some R∈ [1,∞].

(A1) There exists c> 0 such that 0 < c < c(𝜔)∕c(𝜔) ≤ 1, a.e. in Ω.
(A2) It holds g ∈ LP(Ω;H−1∕2

00 (Γ1)) and f ∈ LP(Ω; (H1
Γ0
)∗) for some P∈ [1,∞] (cf. Reference 41).

(A3) Uniform bounds: 0 < C,C < ∞ such that ess inf c(𝜔) ≥ C and ess sup c(𝜔) ≤ C.

Note that Assumptions (PA1), (PA2), and (A2) are standard.18 They are needed to ensure existence and uniqueness
of a pathwise solution. Assumption (A1) is the key assumption for the proposed theory relying on the p∗-condition. We
emphasize that no uniform bound of the underlying random fields as in (A3) is required for the theory to hold. This
somewhat generalizes the class of admissible random fields but discards, for example, lognormal random fields. Note
that the latter yield higher regularity in terms of parametric dependence and thus are not in the focus of this work
since standard approximation theory applies. In particular, a p∗-condition is not necessary. Furthermore, it turns out that
Assumption (A3)—while implying Assumption ((A2))—is useful for interpolation arguments employed later in terms of
the approximation of the diffusion field in weaker norms.
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We define the pathwise bilinear form a associated to the weak formulation of (1) for a given diffusion field B satisfying
pathwise Assumptions (PA1) and (PA2) as

a[B, 𝜔](w, v) ∶= ∫D
B(x, 𝜔)∇w(x) ⋅ ∇v(x) dx, ∀w, v ∈ H1

Γ0
(D),

and the pathwise linear form

𝓁[𝜔](v) ∶= ∫D
f (x, 𝜔)v(x) dx + ∫ΓN

g(𝜔, x)v(x) ds, ∀v ∈ H1
Γ0
(D).

Then the pathwise weak formulation given B for 𝜔 ∈ Ω reads

Seek u(𝜔) ∈ H1
Γ0
(D) s.t. a[B, 𝜔](u(𝜔), v) = 𝓁[𝜔](v), ∀v ∈ H1

Γ0
(D). (3)

Existence, uniqueness and stochastic integrability of (3) is standard and summarized in the following lemma.

Lemma 1 (cp. 18,42, lemma 4.7). Let Assumptions (PA1)–(PA2) and (A2) hold with S= (1/P+ 1/R)−1 ≥ 1. Then there exists
a unique H1

Γ0
(D)-valued random variable u ∈ LS(Ω;H1

Γ0
) pathwise being the unique weak solution u(𝜔) of (3) with B = A

for P-almost all 𝜔 ∈ Ω. In particular u is measureable w.r.t. to the 𝜎-algebra 𝜎(f , g,A) generated by f , g, and A.

2.2 Error estimate for coefficient approximate solutions

Let Â be some perturbation of A in (1), for example, implicitly introduced by a quadrature or triangulation scheme in the
discretization process. Let u and û be (pointwise) weak solutions with respect to A and Â. Then, we are interested in the
distance of u to û in the abstract sense of

u → û if A → Â, (4)

where the type of convergence has to be determined.

2.2.1 Pathwise error estimates

Let u(𝜔) be the solution of (3) with B = A and let û(𝜔) be the solution of (3) with B = Â. Denote by ĉ ∶ Ω → R the lower
bound random variable with respect to Â satisfying Assumptions (PA1) and (PA2). For simplicity, we shall assume that
the right-hand side linear form can be evaluated exactly. Then it holds

a[A, 𝜔](u(𝜔), v(𝜔)) = a[Â, 𝜔](û(𝜔), v(𝜔)). (5)

Inserting 0 = Â(x, 𝜔)∇u(x) − Â(x, 𝜔)∇u(x, 𝜔), one obtains

a[Â, 𝜔](u(𝜔) − û(𝜔), v(𝜔)) = a[A − Â, 𝜔](u(𝜔), v(𝜔)). (6)

Now taking v = u − û and due to the assumptions on A, the left-hand side can be estimated from below by

ĉ(𝜔)||u(𝜔) − û(𝜔)||2H1
Γ0
≤ ||a[Â, 𝜔](u(𝜔) − û(𝜔),u(𝜔) − û(𝜔))||. (7)

Let us assume that ∇u(𝜔) is in Lp(D) for some p∈ [2,∞]. Then for q= 2p/(p− 2)∈ [2,∞], we obtain pathwise

||a[A − Â, 𝜔](u(𝜔), v(𝜔))|| ≤ ||A(⋅, 𝜔) − Â(⋅, 𝜔)||Lq(D)||∇u(𝜔)||Lp(D)||∇v(𝜔)||L2(D). (8)

Combining (7) and (8) yields

||u(𝜔) − û(𝜔)||H1
Γ0
(D) ≤ ĉ(𝜔)−1||A(⋅, 𝜔) − Â(⋅, 𝜔)||Lq(D)||∇u(𝜔)||Lp(D). (9)
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Based on this derivation, we can refine the above statement to a decomposition of the spatial domain D with relaxed
integrability requirements of ∇u in each subdomain.

Lemma 2 (Local perturbation 19). Let D = ∪NSD
s=1 Ds with piecewise disjoint subdomains {Ds}

NSD
s=1 . For s= 1, … , NSD, assume

that [∇u]|Ds (𝜔) ∈ Lps (Ds) for ps ≥ 2 and a.e. 𝜔 ∈ Ω and let qs = 2ps/(ps − 2). Then,

||u(𝜔) − û(𝜔)||H1
Γ0
(D) ≤ ĉ(𝜔)−1

[ S∑
s=1

||∇u(𝜔)||Lps (Ds)||A(⋅, 𝜔) − Â(⋅, 𝜔)||Lqs (Ds)

]
. (10)

For ps = 2 for s= 1, … , NSD, the perturbation result recovers the standard L∞ estimate, w.r.t. A. We are left with the
question of integrability of∇u. Here, we state a pathwise p*-condition in the spirit of Bonito et al.19 adapted to our random
framework.

Definition 1 (p∗-condition). Let the integrability constant p∗ = p∗(A, d,D) > 2 be independent of 𝜔 and let 2 ≤ p < p∗.
In addition, if |Γ1| > 0 there is a conormal derivative trace space Xp(Γ1) ∶= X(p,Γ1,Γ0) with g(𝜔) ∈ Xp. Furthermore, for
f (𝜔) ∈ W1,p

Γ0
(D)∗ and u(𝜔) ∈ W1,p

Γ0
(D) and a random variable Cp(𝜔) = Cp(d,A,D)(𝜔) the following estimate holds true,

||∇u(𝜔)||Lp(D) ≤ Cp(𝜔)(||f (𝜔)||W1,p
Γ0

(D)∗ + ||g(𝜔)||Xp(Γ1)), 𝜔 ∈ Ω. (11)

Here, Xp(Γ1) ⊂ W− 1
p
,p(Γ1) is a closed subspace with equality if Γ0 = ∅ respecting Dirichlet data in the spirit

of the Lions-Magenes space H−1∕2
00 (Γ1)43 obtained by interpolation44 as the dual of the space [W1,p′

0 ,Lp′ ]1∕p,p with
1∕p + 1∕p′ = 1 defined on the Neumann boundary segment.

We emphasize the most common setting with p= 2 and q=∞. In this Hilbertian case, C2(𝜔) = c(𝜔)−1C(D,Γ0) with
c from Assumption (PA1) and a deterministic constant C(D,Γ0) determined by Poincaré and trace inequality constants.

For p> 2, the verification of this condition is somewhat more involved but fortunately still holds true. In the case of a
purely homogeneous Dirichlet boundary, that is, |Γ1| = 0 and for the plain Laplacian with A ≡ I, for any Lipschitz
domain it follows by Jerison and Kenig45 that there exist p∗ = p∗(d,D) > 3 (p∗

> 4 for d= 2) and a constant K = K(p∗
,D)

such that for all 2 ≤ p ≤ p∗,

||∇u(𝜔)||Lp(D) ≤ K||f (𝜔)||W1,p
Γ0

(D)∗ . (12)

The result pointwise a.e. in 𝜔 extends to A(𝜔) ≠ I by a perturbation argument (see References 19,46) and can in
particular be translated to our pathwise framework. Define

p∗
K ∶ (0, 1) → (2, p∗), p∗

K(t) ∶= argmax{K−𝜂(p) > 1 − t ∶ 2 < p < p∗} (13)

with 𝜂(p) ∶= (1 − 2∕p)∕(1 − 2∕p∗) ∈ (0, 1) monotonously increasing. Let random variables p∗
,Cp be defined as

p∗
K(𝜔) ∶= p∗

K(c(𝜔)∕c(𝜔)), Cp(𝜔) ∶=
1

c(𝜔)
K𝜂(p)

1 − K𝜂(p)(1 − c(𝜔)∕c(𝜔))
, (14)

depending on the random variable bounds c, c of A from (PA1). An important observation is that p∗
K(t) is monotonously

decreasing in t. With this construction in mind, let u(𝜔) be the pathwise solution of (3) with B = A satisfying
Assumption (PA1). Then for 2 ≤ p < p∗

K(𝜔) pathwise, a.e. it holds

||∇u(𝜔)||Lp(D) ≤ Cp(𝜔)||f (𝜔)||W1,p
Γ0

(D)∗ . (15)

Hence, in order to satisfy the p∗-condition in Definition 1, the quotient c(𝜔)∕c(𝜔) in (14) needs to be bounded away
from zero to obtain ess inf p∗

K(𝜔) > 2, which motivates Assumption (A1). This result is summarized in the following
theorem.

Theorem 1. Assume |Γ1| = ∅. Let f (𝜔) ∈ W−1,p(D) and let u(𝜔) ∈ W1,p
0 (D) be the corresponding solution of (3) with B = A

satisfying (PA1), (PA2), and (A1) with 2 ≤ p < p∗ ∶= p∗
K(c) ≤ ess inf p∗

K(𝜔) for c> 0 from (A1). Then the p∗-condition holds
true.
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Note that the uniform boundedness Assumption (A3) implies (A1). The case of mixed boundary conditions and Lp

estimates of solution gradients can be derived from results of Gröger.47 W1, p(D) estimates for Robin boundary conditions
can be obtained from Amrouche et al.48 with boundary right-hand side in W− 1

p
,p(𝜕D).

We end the pathwise discussion of this section with an examination of the (p, q) relation. There are two important
cases:

1. q=∞, thus p= 2: In the standard case Â(𝜔) → A(𝜔) in L∞(D)d, d yields û(𝜔) → u(𝜔) in H1
ΓD
(D). This kind of conver-

gence is at hand in case of

• higher regularity: A(⋅, 𝜔) ∈ Ck,𝛼(D) yields an error of at least (hk) using an appropriate quadrature scheme.
• exact meshing: A(⋅, 𝜔) is only piecewise k,𝛼 , k ∈ N0, 𝛼 ∈ (0, 1) with (a priori known, for example, Reference 15)

discontinuities exactly being resolved, for example, through adapted meshes with possible curved cells

2. q<∞, thus p> 2: This case is important if A(⋅, 𝜔) lacks spatial regularity or cannot be resolved in a discretization step
by some Â such that the error in the L∞ norm stays (1), as in Example 1. In this case, the q=∞, p= 2 estimate might
become meaningless. However, the p∗-condition still ensures convergence of the perturbed solution based on weaker
approximation requirements on the coefficient. At this point, one may ask for the approximation in the weakest norm
possible, that is, q= 2 such that

||A(⋅, 𝜔) − Â(⋅, 𝜔)||L2(D)d,d → 0 ⇒ ||u(𝜔) − û(𝜔)||H1
Γ0
(D) → 0. (16)

We note that this indeed is possible by an interpolation argument, assuming that A and Â satisfy the uniform
boundedness (PA1) and (A3). Then,

||A(⋅, 𝜔) − Â(⋅, 𝜔)||Lq(D)d,d ≤ C(𝜔, q)|| A(⋅, 𝜔) − Â(⋅, 𝜔)||1∕q
L2(D)d,d , (17)

with a constant C(𝜔, q) = C(q, ||A(⋅, 𝜔) − Â(⋅, 𝜔)||L∞). As a consequence, in order to obtain a pathwise good approxi-
mation û(𝜔) of u(𝜔), it is sufficient to control the L2 approximation Â(⋅, 𝜔) of A(⋅, 𝜔). However, we note that by the
employed interpolation this estimate introduces a reduced convergence order by a factor 1/q. Hence, ideally one can
strive for an Lq approximation to avoid a degeneration of the convergence order.

2.2.2 Global error estimates

We now analyse how the distance of Â to A transfers to the approximation of the solution û to u. More specifically, we
are interested in an estimate of the form ||u − û||1 ≤ h(||A − Â||2), with continuous h ∶ R+ → R+, h(0)= 0 and suitable
norms ||.||1 and ||.||2 such that u → û in || ⋅ ||1 if Â → A in || ⋅ ||2. We state the main result of this subsection.

Theorem 2 (A priori Lq(D)-perturbation estimate). Let P, Q, R1, R2 ∈ [1,∞], such that S ∶=
(1∕P + 1∕Q + 1∕R1 + 1∕R2)−1 ≥ 1 and let the p∗-condition of Definition 1 hold. For 2 ≤ p < p∗, assume Cp(⋅) ∈ LR2(Ω) and
let f ∈ LP(Ω;W1,p

Γ0
(D)∗) and g ∈ LP(Ω;Xp

Γ1
). Let u(𝜔) and û(𝜔) be the unique solution from (3), with B = A and B = Â,

respectively, satisfying Assumptions (PA1) and (PA2) with R=R1. If A, Â ∈ LQ(Ω;Lq(D)) for q= 2p/(2− p) such that Â

satisfies (PA1) with lower bound ĉ(⋅)−1 ∈ LR1(Ω), then

||u − û||LS(Ω;H1
Γ0
(D)) ≤ C||A − Â||LQ(Ω;Lq(D)), (18)

with C = C(Cp, ĉ, f , g).

Proof. By (9) and the p∗-condition, it holds pathwise that

||u(𝜔) − û(𝜔)||H1
Γ0
≤ ĉ(𝜔)−1||A(⋅, 𝜔) − Â(⋅, 𝜔)||Lq(D)||∇u(𝜔)||Lp(D)

≤ ĉ(𝜔)−1Cp(𝜔)||A(⋅, 𝜔) − Â(⋅, 𝜔)||Lq(D)

× (||f (𝜔)||W1,p
Γ0

(D)∗ + ||g(𝜔)||Xp(Γ1)).
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The result then follows by multiple applications of the Hölder inequality. Choose 𝛼 such that Q = 𝛼T and denote by
𝛼′ its conjugate exponent. Then, skipping the pathwise dependence, this yields

||u − û||T
LT (Ω,H1

Γ0
(D))

≤ ‖‖‖ĉ−1Cp||A − Â||Lq(D)
‖‖‖T

LT𝛼′ (Ω)

× ‖‖‖(||f ||W1,p
Γ0

(D)∗ + ||g||Xp(Γ1))
‖‖‖T

LQ(Ω)
.

Further iterative application of Hölder estimates yield the desired result. ▪

The a priori perturbation estimation gives a qualitative statement of some closeness of the approximation to the true
solution if the approximation error of the involved coefficient A is controlled. We point out that the important case of
coefficients that are numerically approximated in LQ(Ω,L∞) is included. However, note that in this case the need of a
p∗-condition can be relaxed.

Corollary 1 (A priori L∞(D) perturbation estimate). Let P, Q, R1, R2 ∈ [1,∞] such that S ∶=
(1∕P + 1∕Q + 1∕R1 + 1∕R2)−1 ≥ 1 and assume f ∈ LP(Ω;H1

Γ0
(D)∗) and g ∈ LP(Ω;H−1∕2

00 (Γ1)). Let u(𝜔) and û(𝜔) be the
unique solutions of (3) with B = A and B = Â satisfying Assumptions (PA1) and (PA2) with R=R1 and R=R2, respectively.
Then, for A, Â ∈ LQ(Ω;L∞(D)) it holds

||u − û||LS(Ω;H1
Γ0
(D)) ≤ C||A − Â||LQ(Ω;L∞(D)). (19)

While the assumptions in Corollary 1 are rather mild, the important case of random fields A representing composite
random materials with random inclusions (to be examined in the following example) might nevertheless be excluded. If
this type of materials is modeled pathwise by piecewise Hölder continuous or even smoother data then it fits in the
setting of Theorem 2. We shall illustrate this line of thought with a small example.

Example 1 (Inclusion with random radius). Let D= [− 1, 1]d for d= 2, 3, 𝜌 ∼  [0,R] be a uniformly distributed radius
with R < R < 1. For 𝜅1, 𝜅2 ∈ R+, consider

𝜅(x, 𝜔) = 𝜅(x, 𝜌(𝜔)) = 𝜅1𝜒B𝜌(𝜔)(0)(x) + 𝜅2(1 − 𝜒B𝜌(𝜔)(0)(x))

with the Euclidean centered ball of radius 𝜌(𝜔) denoted by B𝜌(𝜔)(0) and an indicator function 𝜒 , see Figure 1. In non-
curved mesh-based discretization schemes using standard Gaussian quadrature rules, the spherical random interfaces
and thus the jump of the coefficient A(x, 𝜔) ∶= 𝜅(x, 𝜔)I cannot be approximated pathwise in L∞(D). In particular, for any
such finite quadrature scheme, by the Gibbs phenomenon this error is (1) with respect to the L∞ norm.

Example 2 (Nonperiodic random matrix composite material). Consider a partition of D= [0, 1]d into disjoint squared
subdomains {Ds, s= 1, … , NSD}, with side length 2Rs, Rs > 0. For the parameter reference domain Ξ ∶= [−1, 1]d+1 and
r = s, consider a bijective mapping 𝜙r ∶ Ξr → r

𝛿
for some 0 < 𝛿 ≪ Rs with

yr ∶= (yr
0, y

r
1, … , yr

d) → 𝜙r(yr) =∶ (𝜌r,pr) = (𝜌r, pr
1, … , pr

d)

and r
𝛿
= {(𝜌r,pr) ∈ [0,R] × Ds ∶ 𝜌 < dist(pr, 𝜕Ds) − 𝛿} for R> 0. Here 𝜙r maps the parameter yr to a radius 𝜌r and a

point pr within Ds modeling variability in the size and the position of a circular inclusion having a positive distance 𝛿
from the boundary 𝜕Ds. Furthermore, we distinguish between the index s for physical structures and r for the parametric
enumeration as in Section 4.1. Then with y= (yr)r and the mapping

D ×
(NSD
×

r=1
Ξr
)
∋ (x, y) → 𝜅(x, 𝜙(y)) =

NSD∑
s=1
𝜒Ds (x)(𝜅1𝜒B𝜌(ps)(x)) + 𝜅2(1 − 𝜒B𝜌(ps)(x))) (20)

yields a parametric representation of a composite material with inclusions defined on nonoverlapping subdomains having
variable positions and sizes, see Figure 1.

In a numeric simulation, we may approximate this setting, for example, by the following approaches

• �̂�MC is a pathwise projection of 𝜅(⋅, y) to piecewise constants on an underlying mesh,
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• �̂�PC is a cluster approximation, that is, a piecewise constant approximation with respect to the parameter y, see
Section 4.2.4

• �̂�surr implicitly approximates 𝜅 via local surrogates in parametric DD methods, see Sections 4.2 and 5.2.

All of the above approximation schemes are not converging in LQ(Ξ;L∞(D)).

Remark 1. The convergence assumption in LQ(Ω;Lq(D)) and the requirements of the p∗ condition can be further relaxed
in the fully discretized setting. In fact, it only has to hold

U𝓁 ⊂ U ∶= L2(Ω;H1
Γ0
(D)) → H ∶= L2(Ω,L2(D)), (21)

with discrete space U𝓁 with dimU𝓁 <∞ on level 𝓁 ≥ 0. Let

b[B](u, v) ∶= ∫Ω ∫D
B(x, 𝜔)∇u(x, 𝜔) ⋅ ∇v(x, 𝜔)dxdP. (22)

In the discrete case, by Strang’s lemma, one needs an estimate of

|b[A](w𝓁 , v𝓁) − b[Â](w𝓁 , v𝓁)| = |⟨A − Â,∇w𝓁 ⋅ ∇v𝓁⟩H|. (23)

Hence, for a fixed discretization level 𝓁, we have ∇w𝓁 ⋅∇v𝓁 ∈H and as a consequence it is sufficient to have that Â

converges weakly to A in the H topology to control the error in (23). In particular, it suffices that Â → A strongly in H
instead of stronger convergence in L2(Ω;L∞(D)) or LQ(Ω;Lq(D), when starting from the discrete setting at the cost of an
unknown convergence rate.

3 SURROGATE RESPONSE FOR NONSMOOTH RANDOM OPERATORS

The construction of surrogate models for problems with high-dimensional input (parameters) becomes essential when
extensive sampling is computationally expensive in comparison to the construction of adequate functional approxima-
tions. These may even be viable for nonsmooth data since it can still be possible to exploit local smoothness, which then
results in sufficiently accurate surrogates (in certain parameter subdomains).

In the literature there is a vast amount of surrogate types, including generalized polynomial chaos expansions
(gPCE), for example, References 6,11, its multielement extension, for example, Reference 49, low-rank35,50 and sparse
grid techniques, for example, References 7,51 or neural networks.

A central motivation for the proposed approach is the treatment of parametric composite materials. With this in mind,
our aim is to build (local) surrogates for (local) maps within a DD framework presented in Section 4. For this, we focus on
two surrogate types based on a parameter space decomposition, namely, the multielement generalized polynomial chaos
expansion and a PoU interpolation. The advantages of these approaches is the ability to explore areas in the parame-
ter domain in which the underlying maps are more regular. In the case of low-rank structures, also hierarchical tensor
representations might become useful, which we defer to future research.

3.1 Surrogates for matrix valued functions

In preparation of the framework of localized descriptions of randomness in a DD setup, we discuss different surrogate
models for random matrices of the form

𝝃r(𝜔) → Ms(𝝃r(𝜔)) ∈ R
n,m, (24)

for some indices r, s ∈ N. In our application, n and m depend on the number of interface degrees of freedom (d.o.f.s) or
subsets of these. The choice of surrogate for the map (24) should be made dependent on the regularity of the involved map.
In particular, we have the following surrogates in mind that are based on (quasi-)best approximations or interpolations:
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1. hPCE surrogates: A set of piecewise orthonormal polynomials w.r.t. an underlying measure is constructed, see
Section 3.2. The coefficients in the hPCE series are computed via projection, or (sparse) quadrature schemes.

2. Hierarchical tensor surrogates: A number of samples of Ms and a given underlying discrete tensor basis is provided.
Then, a tensor reconstruction as in the (nonintrusive) variational MC method52 yields a L2-compressed low-rank
representation.

3. PoU interpolation surrogates: Based on an adaptive mesh of Γk, a discrete PoU basis with respect to the mesh is used.
This can, for example, be obtained by a Lagrange basis with respect to mesh nodes. Each basis coefficient is computed
by a single sample. More details are provided in Section 3.3.

4. Sparse grid interpolation surrogates are build by evaluating a realization of Ms on each sparse grid point.

Remark 2. In the case of low regularity of the map (24) and no knowledge of a basis for an approximation scheme with
(quasi)-optimal convergence in the sense of 𝓁p-summability of coefficients for some p≥ 1,53 one may be restricted to lower
local parametric dimensions to obtain an affordable and accurate surrogate.

While out of the scope of this article, a progressive learning of an approximate basis as, for example, via a neural
network regression might be useful, given its training only involves a manageable number of samples.

3.2 Multielement gPCE

The following presentation is motivation by the approximation of nonsmooth functions, where standard functional
approaches may lack efficiency due to the Gibbs phenomenon.

We consider a probability measure 𝜇 on Ξ ⊂ RM′ and the space L2(Ξ,(Ξ), 𝜇), where (Ξ) denotes the Borel 𝜎-algebra
on Ξ.

For the envisaged application, Ξ (or Ξr) is the image and 𝜇 will be the push-forward of P of an underlying parameter
random vector. Let  = N and assume that there exists a family of orthonormal polynomials Ψ ∶= {𝜓𝛼}𝛼∈ , s.t. spanΨ is
dense in L2(Ξ,(Ξ), 𝜇). Note that if there exists c> 0 and a norm || ⋅ || on RM′ such that

∫Ξ
ec||y||d𝜇(y) <∞, (25)

then such a family does indeed exist.54

Example 3. The condition (25) holds for any bounded domain Ξ or for Ξ = RM′ and any Gaussian measure 𝜇 including
the nonindependent case.55

In case that 𝜇 exhibits a product structure, that is, the independent case, the index set  can be reshaped into a
multiindex tensor structure. The existence of a complete orthonormal polynomial basis then may be answered via the
Hamburger moment problem.54

Remark 3. There exist probability measures such that no dense polynomial subset exists. A classical example is the
log-normal case. For M′ > 1 and a nonseparable probability measure 𝜇 or a nontensorized domain Ξ, such a family of
polynomials may exist but is not necessarily unique.54

Let Ξ ⊂ N be finite and let {Ξk ∈ (Ξ), k ∈ Ξ} be a finite nonoverlapping partition of Ξ with 0 < 𝜇(Ξk) ≤ 1. This
gives rise to the decomposition

Y ∶= L2(Ξ,(Ξ), 𝜇)= ⨁
k∈Ξ

Yk, Yk ∶= {v ∈ L2(Ξ,(Ξ), 𝜇) ∶ supp(v) ⊂ Ξk}.

Lemma 3. There is a family of orthonormal polynomials that spans a dense subset in Y k.

Proof. Fix v∈Y k and 𝜖 > 0. Let 𝜒k denote the indicator function with respect to Ξk, then 𝜙𝛼,k ∶= 𝜒k𝜓𝛼 for 𝛼 ∈  is a
polynomial in Y k. Let Ψk be an orthonormalized version of Πk ∶= {𝜙𝛼,k, 𝛼 ∈ } with respect to the inner product in Y k.
Since Ψ is dense in Y , there exists 𝜖 ⊂ , |𝜖| <∞ and a polynomial 𝜓𝜖 ∈ spanΨ with ||Ek

0v − 𝜓𝜖||L2(Ξ,(Ξ),𝜇) < 𝜖. Here,
Ek

0 ∶ L2(Ξk) → L2(Ξ) denotes the zero extension operator. Consequently ||v − 𝜒k𝜓𝜖||Yk < 𝜖, where 𝜒k𝜓𝜖 ∈ spanΨk. ▪

Motivated by Lemma 3, we define an (weak) orthonormal polynomial set

Ψk ∶= {𝜓𝛼,k, 𝛼 ∈ , 𝜓𝛼,k is polynomial}, (𝜓𝛼,k, 𝜓𝛼′,k)Yk = 𝛿𝛼,𝛼′ , (26)
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which spans a dense subset in Y k. We note that in the independend case the decomposition of Ξ has to respect the tensor
structure to obtain a product structure of the polynomial chaos.

Lemma 4.
⨁

k∈Ψk spans a dense subset in Y with Ψk.

As the partition of Ξ can be interpreted as a possibly nonregular meshing, we abbreviate the construction of mul-
tielement generalized polynomial chaos as gHPCE, motivated by hp-FEM in the standard Lebesgue spaces L2(D, d𝜆).
For more details on the existence of dense generalized polynomial chaos we refer to References 6,11,54 and for the
multielement generalized PCE to Reference 56.

3.3 Surrogates based on PoU-interpolation

This section is devoted to the derivation of an adapted hybrid surrogate construction. The adaptivity is such that it explores
areas of higher parameter regularity resulting in “trust zones,” which allow for efficient surrogate models. In numerical
applications, a local sample is checked if it is contained within a trusted area. In this case, the interpolation surrogate
is evaluated. Otherwise, the method falls back to classical sampling. Algorithm 1 summarizes the proposed idea. Note
that the sample generation with the DD approaches in the upcoming section requires the assembly and algebraic mod-
ifications (such as an inversion and a reordering) of the involved operators. This indicates the potential speed up when
large trust zones can be recovered by the algorithm since in this case the evaluation of the surrogate basically evokes no
computational costs.

Let Ξr ∶= img 𝝃r and assume a nested set of discrete function spaces

Ur
s,0 ⊂ Ur

s,𝓁 ⊂ … ⊂ Ur
s,L (27)

of level 𝓁 = 0, 1, … , L, defined by

Ur
s,𝓁 ∶= {𝜙s,𝓁

k ∶ Ξr → R, k = 1, … ,Ni
𝓁 < ∞}, (28)

such that its elements form a PoU on Ξr, that is,
∑Ni

𝓁

k=1 𝜙
s,𝓁
k ≡ 1. To describe an important class of this spaces, we consider

a family of cell partitions r
𝓁 of level 𝓁 = 1, … , L of Ξr with tree structure: for each cell in r

𝓁+1 there is a unique father
cell in r

𝓁 . Furthermore, assume that for each k= 1, … , N𝓁 the function 𝜙
s,𝓁
k has support in one cell in r

𝓁+1 only,
that is,

∀k = 1, … ,N𝓁 , ∃! T ∈ r
𝓁 ∶ supp𝜙s,𝓁

k ⊂ T. (29)

We associate with each such function in Ur
s,𝓁 a global degree of freedom and a unique associated element in Ξr denoted

by global coordinate degree of freedom.
With these constructions we formulate an adaptive scheme to build up surrogates for the parametric matrix ensemble

in Algorithm 1, used in our numerical experiments. The aim of the proposed algorithm is to balance the maximization
the trust region while keeping the creation process as cheap as possible.

Remark 4. The hybrid structure, namely, letting the surrogate coincide with a sample on the nontrust region, allows to
control the cost of creating the surrogate in L iterations. For large L, this leads to overrefinement and thus too many
sampler calls.

Remark 5. Although the above representation is presented for matrices, the technique also extends to matrices given
only implicitly: If we are interested in building a surrogate for 𝝃(𝜔) → A(𝝃(𝜔))−1, due to the PoU approach, for
each global coordinate degree of freedom we store a LU factorization only. Then, the evaluation of the surrogate
at a point p requires several forward-backward substitutions associated to all basis functions evaluating to nonzero
at p. Note that here each LU decomposition may have its own sparsity pattern determined by its pivotization and
scaling.
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Algorithm 1. Hybrid surrogate based on partition of unity

Input: ◦ sampler  for parametric matrix Ms(𝝃r(𝜔))
◦ surrogate quality parameter tol > 0
◦ maximal level of refinement L

Output: hybrid surrogate for 𝝃r(𝜔) → Ms(𝝃r(𝜔)).
1: init r

0,U
r
s,0

2: for all 𝓁 = 0,… ,L do
3: init markings/ trust region / nontrust region as ∅
4: for all global (coordinate) d.o.f.s of Ur

s,𝓁 do
5: evaluate  and assign it to the corresponding global d.o.f.
6: end for
7: for all T ∈ r

𝓁 do
8: judge quality of current surrogate on T w.r.t tol and set T to be trusted / not trusted
9: update trust region / nontrust region with T

10: if T is not trusted then
11: mark T in (r

𝓁 ,U
r
s,𝓁) for refinement, that is, add to markings

12: end if
13: end for
14: if markings = ∅ then break
15: else r

𝓁+1,U
r
s,𝓁+1 ∶= refine(r

𝓁 ,U
r
s,𝓁 , markings)

16: end for
return hybrid surrogate: defined in Ur

𝓁 for input within trust region and else coincides with  .

4 PARAMETRIC DD

This section is devoted to the introduction of substructuring methods with locally defined random input fields. Such
local definitions can be obtained by a localization of random fields as in Reference 57 or is given naturally as in the
case of matrix composites. We first present the abstract framework of local random fields. Second, based on a semidis-
cretization we translate the framework to the simple parametric Schur complement method similar to Reference 36,
which is rather simple in terms of implementation but lacks weak scalability. Finally, we introduce our parametric
FETI-DP method and give details of appearing local parameter dependend operators for both, the system operators and
the preconditioners. As a special case of a zeroth-order multielement PCE, we discuss a cluster sampling based FETI-DP
method.

The proposed method represents a special case of a global sampling routine, which can be embedded into advanced
sample schemes such as MLMC. A global sample is then transformed into several local contributions (i.e., local samples).
Based on the underlying substructuring method, local surrogates based on local decoupled samples are constructed in a
first (offline) step. The second (online) stage is the sampling stage in which the locally constructed surrogates are applied.
Recall that by the use of the trust zone based surrogates described in Section 3.3, local sample processes can be accelerated
by avoiding assembling and algebraic modification. Our method is summarized in Algorithm 2.

4.1 Abstract random domain decomposed model

Consider a partition of D into mutual disjoint, nonempty connected Lipschitz subdomains Ds ⊂D, s= 1, … , NSD <∞.
We are interested in random fields given in parameterized form and possibly localized with respect to (Ds)s. Such local
representations of random fields may for instance occur in the following scenarios

• Localization to Ds via KLE, for example, References 58,59, in case of underlying Gaussian random fields, see
Example 4.

• Local uncertainties, for example, the random composite material model from Example 2.
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F I G U R E 2 Parametric random input given by M = 4 subrandom vectors 𝝃r , r = 1, … , 4 distributed over
different substructures

Instead of an abstract random field A, we consider a parametrization by a given stochastic coordinate system repre-
sented by some 𝝃 ∶ Ω → RM′ , M′ ∈ N ∪ {∞}. Let 𝜎(𝝃) be the sigma algebra generated by 𝝃 and (Ω, 𝜎(𝝃),P) the considered
probability space. Furthermore, assume a subenumeration of the M′-dimensional random vector 𝝃 into M ≤NSD blocks
of mr-dimensional (sub) random vectors 𝝃r ∶ Ω → Rmr with 1 ≤ mr ≤ M′ and components 𝜉r

i ∶= (𝝃r)i, i = 1, … ,mr, r =
1, … ,M. We are then interested in a physical model described by a linear PDE with randomness modeled by 𝝃 where
at most one input random subvector 𝝃r acts on a subdomain Ds as shown in Figure 2. If the latter is the case, we call the
tuple (r, s) an active index, which we collect in

active ∶= {(r, s) ∈ {1, … ,M} × {1, … NSD} ∶ (r, s) is active index}. (30)

The abstract equations reads for a.a. 𝜔 ∈ Ω as

(𝝃(𝜔), x)u(𝝃(𝜔), x) = f (x), in D, (31)

(𝝃(𝜔), x)u(𝝃(𝜔), x) = g(x), on Γ, (32)

with (𝝃(𝜔), x) = (𝝃r(𝜔), x) for x ∈Ds for each (r, s) ∈ active from (30) and (𝝃(𝜔), x) = (x) else. An analog structure
holds for the boundary operator . Here, we assume existence and uniqueness of a solution u ∈ L2(Ω, 𝜎(𝝃),P)⊗  for
some separable Hilbert space  , for example,  = H1

ΓD
(D) in the case of (1). Note that the abstract model includes several

important cases of random modeling:

• Direct modeling with independent random components, that is, (𝝃s)s are mutually independend random vectors and
 is defined by material parameters that depend locally on 𝝃r in a possibly nonlinear manner.

• The setting 𝝃r ≡ 𝝃 corresponds to global random contributions, which includes the nonlocalized (standard) KLE case.
• The local coordinates 𝝃r are obtained by a localized KLE. In the case that the underlying random field is Gaussian, 𝝃

and 𝝃r consist of mutually independend Gaussian random variable components, although now (𝝃r)r is not independent
in general.

• The case of one localized uncertainty input M = 1 as in Reference 60.

Remark 6. In order to balance the workload for parallel computations in the DD schemes introduced by varying sizes of
subdomains described below, one might decompose a large subdomain, for example, Ds, with operator dependence only
on 𝝃r, (r, s) ∈ active into Ds = Ds′ ∪ Ds′′ , thus updating active with (r, s′), (r, s′′) instead of (r, s). This may require more
involved system preconditioners since the material coefficient on the interface Ds′ ∩ Ds′′ might behave nontrivially.

Example 4 (Localized KLE, 58). Given the mean and covariance kernel, a random field A = 𝜅I may be written via KLE
as

𝜅(x, 𝜔) = 𝜅(x, 𝜼(𝜔)) = 𝜅0(x) +
∞∑

i=1

√
𝜆i𝜅i(x)𝜂i(𝜔), x ∈ D,

with centered, uncorrelated random variables 𝜂i and eigenpairs (𝜆i, 𝜅i) of the underlying covariance operator with respect
to the full domain D. When considering the eigenvalue problem on subdomains Ds only, we obtain local representations
in a new (larger) coordinate system 𝝃 = (𝝃s)NSD

s=1 with subcoordinates 𝝃s = (𝜉s
i )i∈N, that is, active = {(s, s) ∶ s = 1, … NSD}

and

𝜅(x, 𝜔) = 𝜅(x, 𝝃s(𝜔)) = 𝜅0(x) +
∞∑

j=1

√
𝜆s

j𝜅
s
j 𝜉

s
j (𝜔), x ∈ Ds.
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Assume that the global KLE truncated after M terms yields the desired accuracy. In the case that the local eigenvalues
(𝜆s

j )j have a (much) lower magnitude, the local KLE can be truncated after ms ≪M terms, that is, a low-dimensional
local representation of the random field. Furthermore, there exists a matrix Ts ∈ Rms,M such that (𝜂s

j )
ms
j=1 = Ts(𝜉i)M

i=1. In
the case of Gaussian random fields, one gets the favorable property that (𝜂s

j ) are independent Gaussian random vari-
ables as well, enabling local dense polynomial chaos approximations. Note however that (𝝃s)s is not independent in
general.

Remark 7. Contrary to Example 4, in the case that (𝜂i)M
i=1 are independent non-Gaussian random variables, the distribu-

tion of (𝜉s
j )

ms
j=1 can be arbitrarily complex since the involved linear map Ts introduces a nonlinear mapping of distributions

due to ms <M. Hence, one cannot expect (𝜉s
j )

ms
j=1 to be independent and the existence of a dense polynomial chaos in

LQ(Ω, 𝜎(𝝃s),P) is not ensured in general, for example, if img 𝝃s ⊂ Rms is unbounded. Note that the image might be of lower
topological dimension, for example, a submanifold only.

4.2 Parametric hybrid DD based on semidiscretization

DD generally refers to the splitting of a PDE or an approximation thereof into coupled problems on smaller subdomains,
forming a partition of the original domain, see Reference 20. We present the framework on a semidiscrete formulation
with regard to some suitable discrete subspace of  . Then, the structure of the decomposed random model (31) and (32)
results in a random system of equations

(𝝃(𝜔))u(𝝃(𝜔)) = F(𝝃(𝜔)). (33)

The DD approach for random PDEs is applied in the context of global and local KLEs in References 32 and 36 with
a combination of model reduction techniques61 for the Schur complement or the FETI-DP method. We note that the
technique based on global random coordinates as in Reference 32 is based on a stochastic FE formulation without a
sampling stage, which limits it to a moderate number of random coordinates due to the curse of dimensionality. The
analysis and application of hierarchical tensor formats in this context is deferred to future research. To alleviate the issue
of moderate dimensions, our aim is to rely on local random coordinates only, for example, based on canonical tensor
representations as in Reference 34. In what follows, we present both techniques, the Schur complement and the FETI-DP
method based on adaptively constructed local surrogates that enable accelerated sampling. The devised general hybrid
approach is summarized in Algorithm 2.

Remark 8. If the local representation of (𝝃r(𝜔), x) is given by means of a gPCE with independent (𝜉r
k) then the involved

local random operators may be represented in low-rank formats as in Reference 62, allowing for higher dimensional local
input. This approach transfers to compressed structures of all involved parametric suboperators.

We note that in case that the quantity of interest QoI(u) is only local, not all decoupled local problems may need to be
resolved in Algorithm 2.

4.2.1 Parametric Schur complement method

As a first approach to nonoverlapping DD methods, we consider the Schur complement method, see, for example [ 20,
ch. 4-5] for details. Given the simple design of the Schur complement method, we present some details of the appearing
local operators. This should serve the reader to translate the abstract framework of the preceding section to the FETI-DP
method proposed in the following. Further details of the approach applied for random PDEs can be found in References
36,37.

For simplicity, the presentation is based on the elliptic linear equation (1) with the random dependence setting intro-
duced in the beginning of this section. Given a physical discretization space Vh ⊂  ∶= H1

Γ0
(D) spanned by a nodal

Lagrange basis on a matching triangle (tetrahedral for d= 3) mesh of D, we consider a semidiscretization with respect
to the physical coordinate x ∈D. Let us denote by Π the (primal) interface

Π = ∪s≠s′𝜕Ds ∩ 𝜕Ds′ ,
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Algorithm 2. Abstract hybrid domain decomposition

Input: ◦ number of total samples N
◦ local discrete physical spaces Vh,s
◦ surrogate cost bound C$ and desired accuracy tol

Output: Sample-based approximation of some quantity of interest QoI(u).
1: for all active pair (r, s) subdomain Ds in parallel do
2: if surrogate creation cost < C$ then
3:  s(𝝃r(𝜔)) = createLocalSurrogate(Vh,s, semidiscrete PDE, tol)
4: else
5:  s

sample(𝝃
r(𝜔)) = createLocalSampler(Vh,s, semidiscrete PDE, matrix free=true)

6: end if
7: end for
8: for all sample 𝝃k, k = 1,…,N in parallel do
9: obtain local samples (𝝃r

k)
M
r=1 from 𝝃k

10: solve global (coarse) problem via parallel application of  s(𝝃r
k) or  s

sample(𝝃
r
k) for s = 1,… ,NSD

11: solve full decoupled local problems in parallel for s = 1,… ,NSD
12: add solution sample contribution to approximate QoI(u)
13: end for

consisting of faces (d= 3), edges and vertices with respect to the underlying mesh. Identifying the d.o.f.s in V h with
topological entities, these can be reordered with regard to local contributions indexed by the letter L, corresponding to
topological entities in the inner of Ds and on Neumann parts 𝜕Ds ∩ Γ1 and to interacting primal interface contributions
indexed by the letter Π, for convenience. This semidiscretization of (1) leads to the structure (33) with

(𝝃(𝜔)) ∶=

(
ALL ALΠ

AΠL AΠΠ

)
(𝝃(𝜔)), u(𝝃(𝜔)) ∶=

(
uL

uΠ

)
(𝝃(𝜔)), F ∶=

(
fL

fΠ

)
.

Block Gaussian elimination leads to an equivalent system to (33) given by

̃(𝝃(𝜔))u(𝝃(𝜔)) = F̃(𝝃(𝜔)), (34)

where

̃(𝝃(𝜔)) ∶=

(
ALL ALΠ

0 SΠΠ

)
(𝝃(𝜔)), F̃(𝝃(𝜔)) ∶=

(
fL

f̃ Π(𝝃(𝜔))

)
,

with f̃ Π(𝝃(𝜔)) ∶= fΠ − AΠL(𝝃(𝜔))ALL(𝝃(𝜔))−1fL.Let Rs be the rectangular restriction matrix which restricts the global d.o.f.s
vector associated to Π to local d.o.f.s vectors associated to local interface entities on the mesh on Ds only. Since the mesh
has no hanging nodes, the entries of each Rs are in {0, 1}. For each s= 1, … , NSD, consider local assembled matrices
As

LL,A
s
LΠ,A

s
Π,L,A

s
ΠΠ, associated to local physical discretization spaces on Ds. Note that for each active index (r, s) these

matrices have a parametric dependence on 𝝃r. With the given ordering in (30), it follows that these matrices are given by

ALL(𝝃(𝜔)) = blockdiag(A1
LL, … ,As

LL, … ,ANSD
LL ),

AΠL(𝝃(𝜔)) = blockdiag(R1, … ,RNSD)[A
1
ΠL, … As

ΠL, … ,ANSD
ΠL ],

SΠΠ(𝝃(𝜔)) =
NSD∑
s=1

RsSs
ΠΠRT

s , Ss
ΠΠ = As

ΠΠ − As
ΠLAs−1

LL As
LΠ,

where each matrix with index s only depends on 𝝃r(𝜔) if (r, s) ∈ active and AΠL = ALΠ almost everywhere in Ω. In
particular, for each active index (r, s), we have

Ss
ΠΠ(𝝃

r(𝜔)) = As
ΠΠ(𝝃

r(𝜔)) − As
ΠL(𝝃

r(𝜔))As
LL(𝝃

r(𝜔))−1As
LΠ(𝝃

r(𝜔)). (35)



1016 EIGEL and GRUHLKE

Algorithm 3. Realization as parametric Schur complement method

Input: ◦ sample yk ∶= 𝝃k(𝜔) = [𝝃1
k,… , 𝝃M

k ](𝜔),
◦ local system surrogates for 𝝃(𝜔) → SΠΠ(𝝃(𝜔))
◦ local surrogates for preconditioner of (parametric) SΠΠ.

Output: approximated realization of uk = u(𝝃k(𝜔)) or of subdomain parts us
k = uk|Ds .

1: Compute right-hand side realization F̃k = [fL, f̃Π,k] = F̃(𝝃k(𝜔)) of (34) via system surrogates.
2: Iteratively solve SΠΠ,kuΠ,k = f̃Π,k via PCG. The application of operator SΠΠ,k and its preconditioner are based on

evaluation of local surrogates.
3: Solve block diagonal system ALL,kuL,k = fL − ALΠ,kuΠ,k in parallel.

In the deterministic setting, (34) is solved by first iteratively solving for uΠ and second solving (in parallel) for interior
contributions us

L with uL = [u1
L, … ,uNSD

L ]. The full matrix SΠΠ is never formed explicitly. Its action on a vector involves
the application of the smaller matrices Ss

ΠΠ. In the deterministic case, the latter might be realized by a LU decomposition
of As

LL and we build local surrogate models Ŝs
ΠΠ ≈ Ss

ΠΠ. Depending on the regularity of the maps

𝝃r(𝜔) → Ss
ΠΠ(𝝃

r(𝜔)) (36)

and the input dimension of 𝝃r, this might be realized by interpolation (e.g., sparse grid, Lagrange interpolation) or
(quasi-)best approximation techniques (tensor reconstruction, hPCE). We note that the construction of the surrogate
models may be expensive if the number of local d.o.f.s associated with Π or the random dimension of 𝝃r grows or if
there is a lack of regularity. In a practical implementation, this cost factor has to be compared with the cost of a full
sampling approach with several backward and forward solves of the involved LU decompositions in the iterative process
of the application of the Schur complement matrix. It is known that the condition number of a deterministic Schur
complement matrix grows like (1∕Hh), where H is the diameter of the subdomains and h the maximal element size in
the subdomains.20

The proposed method is summarized in Algorithm 3.

4.2.2 Parametric FETI-DP

The FETI-DP method is known to successfuly balance the requirement of a minimal communication by a coarse space by
keeping good convergence rates within the preconditioned conjugate gradient solution scheme. It was introduced in Ref-
erence 30 and further developed in References 20,23,24,27,31, see also the references therein for the purely deterministic
case. The main idea is to translate the original problem into a dual problem in which the local iterates are not conforming
(e.g., discontinuous in the H1 framework), represented by most d.o.f.s associated with the domain interfaces. Only a small
number is strongly enforced to be conforming (e.g., continuous) opposite to the Schur complement method, where all
(primal) d.o.f.s associated with the interface are globally constrained. This small number of constraints is associated with
primal d.o.f.s for building the (global) coarse communication space. To enforce conformity of the method, the iteration
solves for Lagrange multipliers 𝜆, which construct the dual variables. In the case of convergence, this enforces conformity
of the nonprimal interface d.o.f.s. For further extensions of the coarse space design, for example, including adaptivity, we
refer to References 25,26.

For the sake of simplicity, we stay on the algebraic matrix level subject to the discretization of the symmetric model
problem (1). For interpretation in a Hilbertian framework, we refer to Reference 63 and for a formulation in intermediate
approximation FE spaces to Reference 20.

After choosing the interior, dual and primal d.o.f.s indexed by the subindices I,Δ, andΠ for a given physical discretiza-
tion based on meshes on Ds that are aligned with each other on the subdomain interfaces, the structure of the system (33)
is given by

(𝝃(𝜔)) ∶=
⎛⎜⎜⎜⎝

ALL ALΠ  T
L

AΠL AΠΠ  T
Π

L Π 0

⎞⎟⎟⎟⎠ (𝝃(𝜔)), u(𝝃(𝜔)) ∶=
⎛⎜⎜⎜⎝

uL

uΠ

𝜆

⎞⎟⎟⎟⎠ , b =
⎛⎜⎜⎜⎝

fL

fΠ
0

⎞⎟⎟⎟⎠ .
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Here, the subindex L = [I,Δ] merges the subindices I and Δ to local contributions. The jump operators L =
[ 1

L , … , NSD
L ] with  s

L = [0, Js
Δ] and Π consisting of values in {− 1, 0, 1} are build such that the solution vector [uL,uΠ]

yields a conforming approximation if [L,Π][uL,uΠ]T = 0. Introducing restriction operators Rs
Π similar to the Schur

complement method, mapping local primal d.o.f.s to global d.o.f.s associated with index Π, subassembling with respect
to the primal variables (thus eliminating the need of Π) and application of Gaussian block elimination leads to an
equivalent formulation that reads

̃(𝝃(𝜔))ũ(𝝃(𝜔)) = b̃(𝝃(𝜔)), (37)

where

̃(𝝃(𝜔)) ∶=
⎛⎜⎜⎜⎝

ALL ̃LΠ  T
L

0 S̃ΠΠ −S̃Π𝜆

0 0 F

⎞⎟⎟⎟⎠ (𝝃(𝜔)), ũ(𝝃(𝜔)) ∶=
⎛⎜⎜⎜⎝

uL

ũΠ

𝜆

⎞⎟⎟⎟⎠ , b̃(𝝃(𝜔)) ∶=
⎛⎜⎜⎜⎝

fL

b̃Π(𝝃(𝜔))
b̃𝜆(𝝃(𝜔))

⎞⎟⎟⎟⎠ . (38)

Here, it holds that ũΠ =
∑NSD

s=1 Rs
Πus

Π, with uΠ = [u1
Π, … ,uNSD

Π ], stemming from a rearrangement of global d.o.f.s. For
s= 1, … , NSD, similar to the Schur complement method, we introduce the locally assembled semidiscrete matrices
As

LL,A
s
LΠ,A

s
Π,L,A

s
ΠΠ with dependence only on 𝝃r(𝜔) if (r, s) ∈ active. We then have the relation

S̃ΠΠ(𝝃(𝜔)) ∶= ̃ΠΠ − ̃ΠLA−1
LL̃LΠ =

NSD∑
s=1

Rs
Π(A

s
ΠΠ − As

ΠLAs−1

LL As
LΠ)R

s
Π

T ,

S̃Π𝜆(𝝃(𝜔)) ∶= ̃ΠLA−1
LL T

L =
NSD∑
s=1

Rs
ΠAs

ΠLAs−1

LL s
L

T ,

with the random FETI-DP dual matrix F and right-hand side contributions such that

F(𝝃(𝜔)) ∶= LA−1
LL T

L + S̃T
Π𝜆S̃−1

ΠΠS̃Π𝜆,

b̃Π(𝝃(𝜔)) ∶=
NSD∑
s=1

Rs
Π(f

s
Π − As

ΠLAs−1

LL f s
L),

b̃𝜆(𝝃(𝜔)) ∶= LA−1
LLfL − S̃T

Π𝜆S̃−1
ΠΠb̃Π.

Note that for better readability we omit the parametric dependence of matrices on the right-hand sides of the above
equations. Examining the occurring matrices, their dimensions and their random dependence on local random vectors
𝝃s(𝜔), we now discuss the construction of surrogate models. In order to avoid multiple LU forward and backward substi-
tutions in the iteration of the system F𝜆 = b̃𝜆, we aim for a lower total cost of computing and storing the surrogates for a
given total number of samples. The parametric matrix F contains three contributions, which are discussed separately:

• With the random dependence As
LL = As

LL(𝝃
r(𝜔)), (r, s) ∈ active, recall that

LA−1
LLJT

L =
NSD∑
s=1

 s
L As−1

LL s
L

T ,  s
L = [0, s

Δ].

The inverse of As
LL can be seen as a 2× 2 block matrix

As−1

LL =

(
Bs

II Bs
IΔ

Bs
ΔI Bs

ΔΔ

)
. (39)

Due to the design of  s
L , only information of BΔΔ contributes. Consequently, we aim for a surrogate of the mappings

𝝃r(𝜔) → Bs
ΔΔ(𝝃

r(𝜔)), ∀(r, s) ∈ active. (40)
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Algorithm 4. Realization in parametric FETI-DP

Input: ◦ sample yk ∶= 𝝃k(𝜔) = [𝝃1
k,… , 𝝃M

k ](𝜔)
◦ local-based system surrogates for 𝝃(𝜔) → [F, S̃ΠΠ, S̃Π𝜆](𝝃(𝜔))
◦ local-based surrogates for preconditioner of (parametric) F.

Output: approximated realization of uk = u(𝝃k(𝜔)) or subdomain parts us
k = uk|Ds .

1: Compute r.h.s. sample b̃k = [fL, b̃Π,k, b̃𝜆,k] = b̃(𝝃k(𝜔)) (38) via surrogates (41)-(44).
2: Iteratively solve Fk𝜆k = b̃𝜆,k via a preconditioned CG method via application of Fk and its preconditioner based on

(40)–(42) and (50).
3: Solve Schur complement system S̃ΠΠ,kũΠ,k = b̃Π,k + S̃Π𝜆,k𝜆k via (42).
4: Solve block diagonal system ALL,kuL,k = fL − ÃLΠ,kũΠ,k −  T

L 𝜆k in parallel.

The surrogates of this mapping involve the largest coefficient matrices, depending only on the local dual d.o.f.s.
• We are now concerned with constructing surrogates to build S̃Π𝜆. Note that with the notation in (39) it follows

As
ΠLAs−1

LL  s
L

T = (As
ΠIBs

IΔ + As
ΠΔBs

ΔΔ) s
Δ

T .

Thus, we aim for surrogates of the mapping

𝝃s(𝜔) → [As
ΠIBs

IΔ + As
ΠΔBs

ΔΔ](𝝃
r(𝜔)), ∀(r, s) ∈ active. (41)

Coefficient matrices of the involved surrogates only depend on the number of local primal d.o.f.s times local dual d.o.f.s
and are thus rather small if the coarse space is small.

• The Schur complement matrix S̃ΠΠ is treated as in the parametric Schur complement method in Section 4.2.1 via
surrogates of

𝝃r(𝜔) → Ss
ΠΠ(𝝃

r(𝜔)), ∀(r, s) ∈ active, (42)

whereas the coefficient matrix sizes only depend on local d.o.f.s associated to the coarse space and hence are rather
small compared with the classic coarse space in the Schur complement method.

The right-hand side of the parametric system can also be computed via surrogates.

• The local surrogates employed for the evaluation of b̃(𝝃(𝜔)) are given by

𝝃r → bs
Π(𝝃

r(𝜔)) ∶= f s
Π − As

ΠL(𝝃
r(𝜔))As

LL(𝝃
r(𝜔))−1f s

L, (43)

for all active indices (s, r).
• The computation of b̃𝜆 can be based on local surrogates

𝝃r(𝜔) → Bs
ΔI(𝝃

r(𝜔))f s
I + Bs

ΔΔ(𝝃
r(𝜔))f s

Δ, (44)

for active indices (s, r) in addition to the surrogates for S̃Π𝜆, S̃ΠΠ and b̃.

Note that all local surrogates can be computed in parallel and stored separately. The suggested approach is summarized
in Algorithm 4.

The advantage of deterministic FETI-DP lies in its potential to lead to a weakly scalable algorithm that is enabled by
a suitable choice of coarse space (associated with Π) and preconditioner P for the submatrix F.20 In the context of DD
techniques, the term scalability is associated with the iterative solution cost of the discrete system, which should not
deteriorate when the number of subdomains grows. Let H denote the diameter of the subdomain and h the maximal
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diameter of the subdomain mesh cells. It can then be shown that

𝜅(P−1F) ≤ C
(

1 + log
(H

h

))2
, (45)

where 𝜅 denotes the condition number, see, for example, Reference 20 and the references therein. The construction of
the scaled lumped and Dirichlet preconditioner and its extension to the random case using surrogates is discussed in
Section 4.2.3.

4.2.3 Preconditioner

In what follows we introduce surrogates for two classic FETI-DP preconditioners, namely, the lumped and the Dirichlet
preconditioner P−1

lumped and P−1
Dir. These are given pointwise by

P−1
# (𝝃(𝜔)) =

NSD∑
s=1

W s s
ΔMs

# s
Δ

TW s, # ∈ {lump, Dir}, (46)

with Mlump = As
ΔΔ and MDir = As

ΔΔ − As
ΔIAs−1

II As
IΔ. Here, Ms

# = Ms
#(𝝃

r(𝜔)) for all (r, s) ∈ active. The diagonal scaling weight
mappings W s have a more involved parametric structure due to the coupling of neighbored random dependencies shown
in (47).

We fix a subdomain Ds and let Ds′ be any neighboring subdomain such that there exist dual d.o.f.sΔs
i andΔs′

j in the local
spaces associated with local meshes on those subdomains that both account for the same global dual degree of freedom.
We collect those Ds′ into Ds

Δ, noting that Ds ∈ Ds
Δ per definition. Then, following Reference 23, the diagonal scaling W s

is defined as

(W s)ii = diag(As
ΔΔ)ii

⎛⎜⎜⎝
∑

s′∶Ds′ ∈Ds
Δ

diag(As′
ΔΔ)jj

⎞⎟⎟⎠
−1

. (47)

With this construction, the diagonal scaling enables the preconditioner to take material heterogeneities into account.
An important observation is that if the assembled local dual matrices As

ΔΔ and their neighborhood counterparts As′
ΔΔ

depend on 𝝃r and 𝝃r′ , respectively, then W s is a matrix valued function depending on 𝝃r and 𝝃r′ . Hence, a direct surrogate
construction may be not applicable due to the sum of involved local parameter dimensions.

Since the underlying physical local meshes are fixed, we can work around this issue. For s′ such that Ds′ ∈ Ds
Δ, we

introduce diagonal matrices W s
s′ with

(W s
s′ )ii =

{
diag(As′

ΔΔ)jj ∃j ∶ Δs′
j ,Δ

s
i share common global dual d.o.f.

0, else.
(48)

Then, we can compactly write

W s = diag(As
ΔΔ)

⎛⎜⎜⎝
∑

s′∶Ds′ ∈Ds
Δ

W s
s′

⎞⎟⎟⎠
−1

, (49)

where W s
s′ = W s

s′ (𝝃
r′ ) for all (r′, s′) ∈ active. With this construction, we may generate surrogate of the following maps,

which depend only on local parameters,

𝝃r(𝜔) →
⎧⎪⎨⎪⎩

Ms
#(𝝃

r(𝜔)), # ∈ {lump, Dir}
diag(As

ΔΔ(𝝃
r(𝜔))),

W s
s′ (𝝃

r(𝜔)), Ds′ ∈ Ds
Δ,

∀(r, s) ∈ active, (50)

and define the application of the preconditioner based on these local surrogates.
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Remark 9. In summary, we presented a pointwise surrogate approach, which for each sample up to surrogate precision
enables weak scalability based on the deterministic results. Alternatively, a fixed preconditioner such as the mean E[P−1

# ]
can be considered as in Reference 36 for the Schur complement method.

4.2.4 Parametric FETI-DP for cluster sampling

In this subsection, we consider cluster sampling (as a special case) that corresponds to a piecewise constant approxima-
tion of the involved parametric assembled discretization in the spirit of zero-order gHPCE from Section 3.2. While the
discretization is applicable to low local parametric dimensions only due to cost aspects, it turns out that the resulting
surrogates have a very simple structure. In this case, the surrogates are not needed to be build explicitly and the method
involving its preconditioner is a simple generalization of the classic deterministic FETI-DP in all its algorithmic details,
like the use of precomputed LU decompositions of the involved inverse matrix applications. We shall describe the benefits
illustrated with the random FETI-DP matrix F.

Let (r, s) be active and consider the zero-order gHPCE for any involved local random matrix Ms such that

Ms(𝝃r(𝜔)) ≈ Ms
0(𝝃

r(𝜔)) ∶=
∑
j∈

Ms
jΨ0,j(𝝃r(𝜔)). (51)

A key observation follows if Ms
j is invertible for all j ∈  . By the push-forward 𝜇r = P#𝝃r and identification yr = 𝝃r(𝜔)

and Ξr = ∪j∈Ξr
j , it holds pointwise

Ms(yr)−1 = (Ms
j′𝚿0,j′ (yr))−1, 𝜇r − a.e., yr ∈ 𝚵r

j′ . (52)

As a consequence, for example, the inverse of the Schur complement structure Ss
ΠΠ(𝝃

r(𝜔))−1 has an easy form given as

Ss
ΠΠ(𝝃

r(𝜔)) =
∑
j∈

Ss
ΠΠj

Ψ0,j(𝝃r(𝜔)), (53)

where only one summand contributes to a realization of 𝝃r. With that structure, for the sth summand Rs
ΠAs

ΠLAs−1

LL s
L

T in
the definition of S̃Π𝜆, it follows that

[As
ΠLAs−1

LL ](y
r) =

(∑
j∈

As
ΠLjΨ0,j(yr)

)(∑
j′∈

(As
LLj′Ψ0,j′ (yr))−1

)
(54)

=
∑
j∈

As
ΠLj(A

s
LLj)

−1𝜒Γr
j
(yr), (55)

with indicator function 𝜒Γr
j
. Thus, for a global realization, the application of F relies on precomputed factorizations of

As
LLj and storage of all involved coefficient matrices for s= 1, … , NSD, and j∈ J. This indicates a limiting factor if |J| gets

too large by the curse of dimensionality.
The piecewise constant approximation scheme in the stochastic space is suitable for domain-wise random fields

𝜔 → a(x, 𝜔) = a(x,X(𝜔)) parameterized by a discrete random variable X with finite-dimensional image {x1, … , x|J|}. Such
fields might be represented as

𝜅(x,X(𝜔)) = 𝜙0(x) +
∑
j∈J
𝜋j(X(𝜔))𝜙j(x), (56)

with polynomials 𝜋j with 𝜋j(xi) = 𝛿ij and functions 𝜙j in physical space. A special case of this is the checkerboard material
with 𝜋0(y) = y, 𝜋1(y) = 1 − y, and 𝜙j ≡ j.

5 NUMERICAL EXPERIMENTS

This section illustrates the numerical performance of the FETI-DP method with local hybrid surrogates using the PoU
interpolation approach of Section 3.3. The choice of the surrogate is motivated by the fact that gHPC surrogates rely on
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F I G U R E 3 Adaptive surrogate construction based on macroelement anisotropic refinement procedure for 𝝃s → Bs
ΔΔ(𝝃

s) associated to
the inner square Ds with tol= 10−4 and 100% trusted zone after six iterations for the smooth problem in Section 5.1

integral computations (such as projections) in the parameter space. Assuming a nonsmooth underlying structure, these
are not directly accessible via an exact numerical quadrature. The interpolation approach relies on point samples that are
always available by the local sampler  s

sample, which subsumes the involved operators, see Algorithm 2. We note that the
choice of surrogate is independent of the underlying substructuring method. In particular, we do not discuss the Schur
complement method, as it has been discussed in Reference 36 at least for the smooth KLE case based on gPCE. The
implementation of the hybrid local surrogate FETI-DP method was carried out as part of the open source ALEA python
library,64 including the surrogate adaptivity, FE backend and all required algebraic modifications. We use the deterministic
FE backend FEniCS65 for assembling of local operators and UMFPACK66 for the inversion of the involved As

LL from (39).
The discrete random coordinate spaces are realized with a custom implementation of a hierarchical tree-based decom-

position of M-dimensional cells such as tensorized hyperquadrilaterals. Each such element can be refined anisotropically
by bisection separately in each coordinate direction. In addition, a cell is refined into macroelements (marked as gray in
the figures below) while remaining a hyperquadrilateral if subareas are not necessary for further refinement in the mark-
ing process. This is realized by keeping the Lagrange basis of the preceding level to represent the solution on a macro
element only while refined subdomains get enriched by further Lagrange basis functions of variable degree. This has
the advantage of saving various d.o.f.s in the surrogate creation process, which determine the total amount of work in the
offline phase.

Two experiments based on the model problem (1) are considered with homogeneous Dirichlet boundary conditions.
In Section 5.1, we examine a smooth local parametric dependence with an additional challenge introduced by a non-
linear coupling of random and physical coordinates. A random cookie problem as described in Example 2 representing
nonsmooth data is depicted in Section 5.2.

Figures 3–5 (respectively, 9–11) illustrate the adaptive surrogate generation. The figures from top to bottom show: the
partitioned parametric domain Γs, employed polynomial degrees (4:blue, 3: yellow, 2 orange), trust/no-trust zones, and local
errors. In the experiments we analyse the surrogate quality for the involved local parametric operators within the FETI-DP
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F I G U R E 4 Adaptive surrogate construction procedure for 𝝃s → Ss
Π𝜆(𝝃

s) associated to an inner square Ds with tol= 10−4 and 100%
trusted zone after five iterations for the smooth problem in Section 5.1

framework derived in Section 4.2.2, namely, As
LL, S̃

s
Π𝜆, Ss

ΠΠ that are used in the underlying computation of each global
sample stage.

5.1 Smooth problem with nonlinear coupling

We consider D= [0, 1]2 and a partition of D into N ×N subsquares Ds with N = 3, x = (x1, x2). A smooth random field with
a coupling of physical and stochastic coordinates is given by

𝜅(x, 𝝃) = 𝜅(x, 𝝃s(𝜔)) = 1.1 + sin(𝛼𝜋(x1𝜉
s
1(𝜔) + x2𝜉

s
2(𝜔))), x ∈ Ds, (57)

with 𝝃s = (𝜉s
1, 𝜉

s
2), 𝛼 = 0.7 and independent 𝜉s

i ∼  [−1, 1], for i= 1, M = 2, s= 1, … , NSD = 9, resulting in a total of 18
random dimensions. In Figures 3–5, we illustrate the adaptive partitioning process of a local random image space [− 1, 1]M

based on Algorithm 1.
In the experiment we utilize a physical discretization with p= 1 FE on uniform 30× 30 triangulations of Ds,

s= 1, … , NSD. The nonlinear coupling of random and physical coordinates introduces a layer of the involved matrix
valued random maps that differs for all s= 1, … , 9, also depending on the size of values taken in x. We illustrate the dif-
ferent structures in Figure 6 by final meshes obtained by the adaptive scheme. We point out that 𝛼 = 2𝜋, or on larger
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F I G U R E 5 Adaptive surrogate construction procedure for 𝝃s → Ss
PP(𝝃

s) associated to an inner square Ds with tol= 10−4 and 100%
trusted zone after five iterations for the smooth problem in Section 5.1

domains D and thus related larger range of x, the surrogate construction becomes more involved and finer layers have to
be resolved.

In the numerical investigation, it is observed that given a tol> 0 for the local interface surrogates, the error between
a sampled solution based on surrogates denoted by ûk

h and its analogue (MC) sample solution denoted by uk
h is of

higher order. The situation is shown in Figure 7 with a pointwise difference of order (10−6) and ||ûk
h − uk

h||H1
0 (D)∕||uk

h|| ∈(6 × 10−5).

5.2 Cookie problem, model problem for more general composite materials

We consider a rectangular domain D= [0, W]× [0, H] with parameters H, W > 0 such that D can be decomposed into
squares Ds for s= 1, … , NSD =NHNW , where NH (respectively, NW ) denotes the number of squares in their respective
direction.

Remark 10. For the physical discretization, a fixed uniform (local) triangular mesh is used implicitly for each realization
of the composite structure. In particular, given a realization of the composite, the mesh does not resolve the jump in the
coefficient, which in a deterministic setting is critical from an accuracy point of view. In order to benefit from using such
a fixed mesh, the FE basis functions can be enriched by an element-wise basis function with a jump in the gradient of the
discrete basis function as described in Reference 67. With this, the presented technique exhibits a better approximation
quality with respect to the solution u.
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F I G U R E 6 Final meshes on the surrogate random domain img 𝝃s = [−1, 1]2 for s= 1, … , 9 with tol= 10−4 and resulting 100% trusted
region for the maps 𝝃s → Bs

ΔΔ(𝝃
s) using macroelements (gray) and an anisotropic refinement. The polynomial degrees vary from 2 for very

small to 4 for larger elements

F I G U R E 7 From left to right: Monte Carlo sample, surrogate based sample and difference of globally reconstructed discrete solution
for the problem in Section 5.1, using a uniform 30× 30 triangular mesh on each of the 3× 3 subdomains
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F I G U R E 8 Left: Surrogate based sample ûk
h for the random cookie problem on 20× 5 subdomains using p= 1 FE on local uniform

40× 40 triangular meshes on Ds. Right: Pointwise difference to Monte Carlo sampled discrete solution uk
h. Local surrogates build with

tol= 10−2 leading to relative H1
0 (D) errors of ||ûk

h − uk
h||H1

0 (D)∕||uk
h|| ≈ 9 × 10−3 for problem in Section 5.2

F I G U R E 9 Adaptive surrogate construction based on macroelement anisotropic refinement procedure for 𝝃s → Bs
ΔΔ(𝝃

s) for an inner
square Ds with tol= 0.5× 10−2. 99.41% trusted zone after six iterations for an interior subdomain of the nonsmooth problem in Section 5.2

On each square domain Ds, the random field A= aI P-a.e. is described by

𝜅(x, 𝜔) = 𝜅(x, 𝝃s(𝜔)) = 𝜒B(𝝃s(𝜔))(x) + 20(1 − 𝜒B(𝝃s(𝜔))(x)), x ∈ Ds. (58)

Here, Bs(𝝃s(𝜔)) denotes a random ball modeled by a random radius 𝜌 and a random x-position ps
x1

of a point ps =
(ps

x1
, ps

x2
) in Ds s.t. (𝜌, ps

x) = 𝜙s(𝜉s
1(𝜔), 𝜉

s
2(𝜔)) with a map 𝜙s chosen such that B(𝝃s(𝜔)) is uniformly bounded away from

𝜕Ds by a given distance as in Example 2. By a push-forward we may identify ys = 𝝃s(𝜔) and interpret ys → 𝜅(⋅, ys) as an
element in L2([− 1, 1]2; L∞(D)). We stress that 𝜅 ∉ ([−1, 1]2;L∞(D)) but 𝜅 ∈ L∞([−1, 1]2;L∞(D)). The defined compos-
ite material coefficient lacks regularity in the random as well as the physical coordinates, satisfying the conditions of
Section 2. Note that the full random dimension is M′ = 2NHNW , for example, with M′ = 200 for 20× 5 squares as shown in
Figure 8.
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F I G U R E 10 Adaptive surrogate construction procedure for 𝝃s → Ss
Π𝜆(𝝃

s) for an inner square Ds with tol= 0.5× 10−2. 100% trusted zone
after five iterations for an interior subdomain of the nonsmooth problem in Section 5.2

Due to the same structure of the domain-wise nonperiodic material description for the homogeneous Dirichlet
problem, it suffices to compute local surrogates for nine subdomains only (four associated to each corner and edge, one
inner domain. The adaptive procedure is illustrated for the inner domain case in Figures 9–11.

We point out the refinement pattern toward the boundary of the parameter domain. The right interface cor-
responds to the case of maximal radius 𝜌 of the random ball, the top and bottom interface correspond to the
maximal displacement of the ball. Due to the surrogate construction based on a semidiscretization, given suffi-
ciently fine physical meshes, the intersection of the random ball and the support of the basic functions associ-
ated locally to the boundary shrinks. Thus, the dependence of the nonsmooth influence gets smaller. Further-
more, we observe a constant error for BΔΔ in Figure 9 that accounts for the remaining support interaction and
exhibits a notable very slow decrease. This interaction is further shown in Figure 12, when solving for a smaller
tolerance tol= 10−3.

In the numerical experiments, building the surrogate 𝝃s → As
LL(𝝃

s)−1 as in Remark 5 leads to massive uniform refine-
ments with an (arbitrarily) slow error decrease. However, the involved interface operators are observed to exhibit rather
smooth subareas in the parametric space with remaining small nontrusted areas.

The underlying pathwise quadrature in the assembling of the system matrices is implemented via a piecewise constant
representation of the matrix composite realization with values derived by areas of intersections of circles and triangles.
Since the composite is of circular shape and a first-order FEM on triangles is used, this quadrature is exact up to machine
precision without the need of adaptive quadrature schemes. Due to the design and meshing of the subdomain, surrogates
for only nine subdomains (four touching the corner, four having intersection with left, right, top, and bottom side, and
one interior) have to be created.
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F I G U R E 11 Adaptive surrogate construction procedure for 𝝃s → Ss
PP(𝝃

s) for an inner square Ds with tol= 0.5× 10−2. 100% trusted zone
after five iterations for an interior subdomain of the nonsmooth problem in Section 5.2

F I G U R E 12 Adaptive procedure for 𝝃s → Bs
ΔΔ(𝝃

s) associated to an inner domain Ds with tol= 10−3. The maximal displacement areas
and the maximal radius areas dominate the error and remain nontrusted. After six iterations a trusted area of 93.35% is obtained for an
interior subdomain of the nonsmooth problem in Section 5.2
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5.3 Discussion and conclusion

We developed a DD sampling approach based on local surrogates with the potential so significantly accelerate the sample
generation by avoiding the assembly of operators and algebraic operations. The hybrid local surrogates are based on the
exploration of “trust zones” and fall back to classic sampling in case that a local sample is untrusted, that is, a surrogate
would not yield accurate approximations. For the surrogate construction, we presented an interpolation scheme. This
turns out to be advantageous since local samples are accessible and no quadrature (as in projections for the gHPC) is
needed. We point out that quadrature-based techniques might not be feasible at all for the considered nonsmooth random
fields.

While the chosen FETI-DP framework needs more local surrogates than a Schur complement, it allows for weak
scalability as a big advantage. In fact, the global stochastic dimension easily exceeds M> 100 for the considered application
with random matrix composite random fields. This motivates the derivation of an efficient sampling algorithm which
can be embedded into an advanced (multilevel) sampling scheme such as MLMC. An analysis can then be carried out by
means of the derived perturbation theory relying on the p∗, closing the theoretical gap of random field approximation in
a weaker topology.
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