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Functional A Posteriori Error Estimation for
Stationary Reaction-Convection-Diffusion

Problems
Martin Eigel · Tatiana Samrowski

Abstract — A functional type a posteriori error estimator for the finite element dis-
cretization of the stationary reaction-convection-diffusion equation is derived. In case
of dominant convection, the solution for this class of problems typically exhibits bound-
ary layers and shock-front like areas with steep gradients. This renders the accurate
numerical solution very demanding and appropriate techniques for the adaptive resolu-
tion of regions with large approximation errors are crucial. Functional error estimators
as derived here contain no mesh-dependent constants and provide guaranteed error
bounds for any conforming approximation. To evaluate the error estimator, a mini-
mization problem is solved which does not require any Galerkin orthogonality or any
specific properties of the employed approximation space. Based on a set of numerical
examples, we assess the performance of the new estimator. It is observed that it ex-
hibits a good efficiency also with convection-dominated problem settings.
2010 Mathematical subject classification: 65N30, 65N15, 65J15, 65N22, 65J10.
Keywords: A Posteriori Error Analysis, Finite Element Method, Adaptivity, Dominant
Convection, Functional Estimator.

1. Introduction

The aim of this paper is to derive a functional type a posteriori error estimator for the
reaction-convection-diffusion equation of the form

− divA∇u+ a · ∇u+ ρ2u = f

defined on some Lipschitz domain Ω ⊂ R2. This equation describes the transport of some
scalar quantity u by a diffusion with coefficient A, a convection with regard to vector field a
and some reaction with coefficient ρ2 which models creation or depletion of the quantity u.
The term f on the right-hand side models a source or sink. We assume the coefficients to be
chosen appropriately for a solution to exist. In practical applications, the convection often
dominates the process and makes the problem difficult to solve accurately numerically. This
is due to so-called layers which arise in the solution. These are regions where the solution
exhibits steep gradients which present a serious challenge for numerical (and also analytical)
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methods. Layers can appear within the domain as well as at the boundaries. Since they are
critical for an accurate approximation of the solution, adequate techniques to resolve such
layers are required. A possible approach is the application of a posteriori error estimators.
These can be used to steer an adaptive mesh refinement with the aim to identify regions
where the error of the approximation is high. Moreover, they provide a measure for the
quality of the numerical approximation.

Adaptivity in the numerical solution for partial differential equation has become a com-
mon requirement in practical computations and a broad range of estimators has been devel-
oped, see, e.g., [2,3,13,26]. In recent years, the goal to derive sharp bounds without unknown
constants has evolved and lead to some very efficient estimators which are often based on
flux equilibration techniques. Functional type error estimators as presented in this work were
introduced in [16–18] and further developed in a series of articles and books, see [20, 22, 25]
and also [23,24]. In these error estimators, Galerkin orthogonality of the numerical solution
is not required and they can be derived without unknown constants in the estimate. For
the model equation used in this article, recent advances in this area [21] have not yet been
applied and demonstrated which we intend to remedy. It is shown that reliable, efficient
and robust functional error estimators can be derived for the reaction-convection-diffusion
problem.

For an adaptive refinement algorithm, an error estimator η can be used, if η identifies
the regions in the domain where the numerical solution uh should be improved, i.e., where
the approximation error e := u− uh is large. This requires the error estimator to be defined
by local contributions ηT on all elements T ∈ T such that

η2 :=
∑
T∈T

η2
T .

The aim is to control the global error e in some norm |||·||| such that

|||e||| < ε

with some small ε > 0. An adaptive algorithm based on the error estimator η stops when
the threshold ε is reached, i.e., the solution has achieved sufficient accuracy.

For the examined second order equations, the discrete solution may deteriorate at local
singularities which, e.g., arise from boundary layers, sharp shock-like fronts or corners in
the domain. The mesh is expected to be adaptively refined in such critical areas of the
domain. This will be examined in the numerical examples in Section 4. It turns out that the
adapted meshes produced on the basis of the functional error estimator resolve the layers of
the problems very precisely.

Notation

Throughout this paper, we use the common notation for Sobolev spaces defined on a domain
Ω (see [1,4,5]). The space of quadratic summable functions is denoted by L2(Ω), the Sobolev
space H1(Ω) of functions with additional L2 summable first order weak derivatives. The L2

scalar product is denoted by (u, v) :=
∫

Ω
uv dx and the induced norm by ‖·‖. Moreover, let

H1
0 (Ω) :=

{
v ∈ H1(Ω) | v|∂Ω = 0

}
and

H(Ω, div) :=
{
y ∈ L2(Ω,R2) | div y ∈ L2(Ω)

}
.
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We assume a piecewise domain Ω ⊂ R2 and its regular partition T into triangles T ∈ T
with edges E ∈ E and the set of vertices N . Any two triangles of T share at most one
common edge or two vertices and all triangles are shape regular, i.e., the ratio of the smallest
circumscribed circle and the largest circle inscribed is bounded by a constant which does not
depend on the triangle for any T ∈ T . We denote by h the mesh-size function which is
defined by h := hT := diam(T ) on T ∈ T . The jump of v ∈ L2(Ω) along some edge E ∈ E
is denoted by [v]E and the outer unit normal vector with regard to E is denoted by νE.

The patch of some node z ∈ N or an edge E ∈ E is defined by ωz := {T ∈ T | z ∈ T} or
ωE := {T ∈ T | E ∈ T}, respectively. Moreover, we define the discrete spaces

Vh :=
{
v ∈ C(Ω) | v|T ∈ P1(T ) for all T ∈ T , and v = 0 on ΓD

}
and V 2

h := Vh × Vh,

where Pk, k ∈ N, is the space of polynomials of maximal degree k.

Outline

The paper is organized as follows. In the next section, we define the reaction-convection-
diffusion equation and required properties. Moreover, we introduce a classic stabilized FEM
discretization for convection dominated problems, the streamline diffusion method (SDM,
see [11]). In Section 3, our new functional type a posteriori error estimator is derived. The
numerical experiments of Section 4 demonstrate the performance of our estimator with a set
of benchmark problems.

2. Model Problem and Discretization

In this section, we introduce the model problem under consideration and describe a stabilized
discretization with the finite element method (FEM).

2.1. Model Problem

We consider the stationary linear reaction-convection-diffusion problem

− divA∇u+ a · ∇u+ ρ2u = f in Ω,

u = u0 on ΓD,

A∇u · n = F on ΓN

(2.1)

on a connected bounded domain Ω ⊂ R2 with Lipschitz boundary Γ = ΓD∪ΓN , ΓD∩ΓN = ∅,
consisting of some Neumann boundary part ΓN and some Dirichlet boundary ΓD of positive
measure meas(ΓD) > 0. The Dirichlet boundary function u0 is assumed to be sufficiently
smooth and well approximated on ΓD in the discrete space of the solution. Moreover, we
assume f and F to be sufficiently smooth. The diffusion tensor A = (aij), i, j = 1, 2, is
symmetric and positive definite with

c1|ξ|2 6 Aξ · ξ 6 c2|ξ|2 for any ξ ∈ R2. (2.2)

The vector-valued function a satisfies the conditions

a ∈ L∞(Ω,R2), div a ∈ L∞(Ω), div a 6 0
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and
ρ ∈ L∞(Ω), ρ < ρ⊕, −1

2
diva+ ρ2 =: λ2 > λ2

0.

We set
κ(x) :=

1

2
(a · n)(x),

and assume that the function κ is defined at almost all points on the boundary Γ. Moreover,
the inflow part of the boundary is a subset of ΓD, i.e., {x ∈ Γ | (a · n)(x) < 0} ⊂ ΓD.

The solution u of (2.1) is defined as a function in the space V0 + u0, where

V := H1(Ω) and V0 := {v ∈ V | v = 0 on ΓD}.

The variational formulation of (2.1) reads: Find u ∈ V0 + u0 such that

a(u,w) = `(w) for all w ∈ V0 (2.3)

with
a(u,w) := (A∇u,∇w) + (a · ∇u+ ρ2u,w), `(w) := (f, w) + (F,w)ΓN

.

One can prove by standard arguments that the solution u ∈ V0 + u0 of (2.3) exists and
is unique, cf. [4, 5]. Furthermore, u continuously depends on the data with respect to the
energy norm defined by

|[u− v]| :=
(
|||∇(u− v)|||2 +

∫
Ω

λ2(u− v)2dx+

∫
ΓN

κ(u− v)2ds
)1/2

. (2.4)

Here,

|||q||| :=
(∫

Ω

Aq · q dx
)1/2

(2.5)

for any vector-valued function q ∈ L2(Ω,R2). We also introduce the norm

|||q|||∗ :=
(∫

Ω

A−1q · q dx
)1/2

which is equivalent to the norm (2.5) due to (2.2).

2.2. FEM Discretization

With some discrete approximation uh,0 ∈ Vh of the Dirichlet data u0, we consider the FEM
discretization of the weak formulation (2.3): Find uh ∈ Vh + uh,0 such that

a(uh, vh) = `(vh) for all vh ∈ Vh. (2.6)

For the common case of dominant convection, the standard finite element method (FEM)
is not a stable discretization. This can be observed by the appearance of spurious oscillations
in the solution. To circumvent this unphysical behavior, the stability of the discretization
is increased by the addition of artificial diffusion to the standard weak form of the (hyper-
bolic) problem. For this, as a common and established stabilization technique, we recall the
streamline diffusion method (SDM). We refer to [6, 11, 12] for details on the SDM and also
to [8, 9] for the streamline-upwind Petrov–Galerkin method (SUPG).
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The numerical experiments in Section 4 employ the standard SDM which exhibits good
stability properties and high order accuracy. Instead of a test function v as noted above, we
now use w which has an additional modification term that accounts for the vector field a,

w = v + δa · ∇v.

Several choices for the scaling δ are discussed in the literature. Usually it is expressed as a
function of the local Péclet number Peh which depends on the local mesh size hT and the
coefficient a,

δ =
hT
2|a|

ζ(Peh).

For our computations we use ζ(Peh) := max{0, 1− 1/(2Peh)} as in [15], also see [6].
With the SDM discretization, the modified bilinear and linear forms for the system (2.6)

read

aSDM(uh, vh) := a(uh, vh)−
∑
T∈T

(divA∇uh, δa · ∇vh)T + (a · ∇uh + ρ2uh, δa∇vh),

`SDM(vh) := `(vh) + (f, δa · ∇vh).

3. Functional Error Estimator

3.1. General Upper Bound of the Energy Norm

In this section, we are concerned with a general functional a posteriori error estimator for
reaction-convection-diffusion problems of the form (2.1). For the reader’s convenience, we
recall the derivation of this general estimate which was presented in [14, 22]. At first, we
observe that for any v ∈ V∫

Ω

(div a)(u− v)2 dx =

∫
ΓN

a · n(u− v)2 ds−
∫

Ω

a · ∇(u− v)2 dx

=

∫
ΓN

2κ(u− v)2 ds−
∫

Ω

2(a · ∇(u− v))(u− v) dx,

and, therefore,∫
Ω

(
(a · ∇(u− v))(u− v) + ρ2(u− v)2

)
dx =

∫
Ω

λ2(u− v)2dx+

∫
ΓN

κ(u− v)2ds. (3.1)

As exemplified in [14, 22], with w = u − v, the weak formulation (2.3) of the reaction-
convection-diffusion problem has the form∫

Ω

(
A∇(u− v) · ∇(u− v) + (a · ∇(u− v))(u− v) + ρ2(u− v)2

)
dx

=

∫
Ω

(f − (a · ∇v)− ρ2v)(u− v) dx−
∫

Ω

A∇v · ∇(u− v) dx+

∫
ΓN

F (u− v) ds. (3.2)

We deduce with (3.1) that the left-hand side of (3.2) is equivalent to the squared energy
norm (2.4). We recall that for all

y ∈ Q := H(Ω, div) =
{
q ∈ L2(Ω,R2) | div q ∈ L2(Ω), q · n ∈ L2(ΓN)

}
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the following equation holds:∫
Ω

(w div y + y · ∇w) dx =

∫
ΓN

(y · n)w ds for all w ∈ V0 := H1
0 (Ω).

Thus, (3.2) yields the following representation of the energy norm:

|[u−v]|2 =

∫
Ω

rΩ(v, y)(u−v) dx+

∫
Ω

(y−A∇v) ·∇(u−v) dx+

∫
ΓN

(F −y ·n)(u−v) ds (3.3)

with
rΩ(v, y) := f − a · ∇v − ρ2v + div y.

We denote the first term of (3.3) by

I1 :=

∫
Ω

rΩ(v, y)(u− v) dx.

Application of Hölder and Friedrichs’ inequalities yields

I1 = µ

∫
Ω

rΩ(v, y)(u− v)dx+ (1− µ)

∫
Ω

rΩ(v, y)(u− v) dx

6 µ

∫
Ω

rΩ(v, y)(u− v)dx+ (1− µ)‖rΩ(v, y)‖L2(Ω)c
−1
1 CF,Ω|||∇(u− v)|||, (3.4)

where 0 6 µ 6 1 and CF,Ω is the Friedrichs’ constant defined by

CF,Ω := sup
w∈V0\{0}

‖w‖Ω

‖∇w‖Ω

.

If we set µ = 0 in case of λ = 0 and choose µ arbitrarily in (0, 1) in all other cases, the values
of the integral (3.4) can be estimated by

I1 6 µ
∥∥∥1

λ
rΩ(v, y)

∥∥∥
L2(Ω)
‖λ(u− v)‖L2(Ω) + (1− µ)‖rΩ(v, y)‖L2(Ω)c

−1
1 CF,Ω|||∇(u− v)|||. (3.5)

For the second integral of (3.3), we set

I2 :=

∫
Ω

(y − A∇v) · ∇(u− v) dx

and find by the Hölder inequality

I2 6 |||y − A∇v|||∗|||∇(u− v)|||. (3.6)

Finally, we define

I3 :=

∫
ΓN

(F − y · n)(u− v) ds

and obtain for 0 6 ν 6 1

I3 6 ν

∫
ΓN

(F − y · n)(u− v) ds+ (1− ν)‖(F − y · n)‖L2(ΓN )c
−1
1 CT,ΓN

|||∇(u− v)|||,
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where CT,ΓN
is a constant from the trace inequality such that

‖w‖L2(ΓN ) 6 CT,ΓN
‖∇w‖L2(Ω) for all w ∈ V0.

The factor ν can be chosen arbitrarily in the interval (0, 1). With ν = 0 for κ = 0, we arrive
at the estimate

I3 6
∥∥∥ ν√

κ
(F − y · n)

∥∥∥
L2(ΓN )

‖
√
κ(u− v)‖L2(ΓN )

+ (1− ν)‖(F − y · n)‖L2(ΓN )c
−1
1 CT,ΓN

|||∇(u− v)|||. (3.7)

We define
C1 := c−1

1 CF,Ω and C2 := c−1
1 CT,ΓN

.

With (3.5)–(3.7) we obtain

|[u− v]|2 6
(∥∥∥µ
λ
rΩ(v, y)

∥∥∥2

L2(Ω)
+ |||y − A∇v|||2∗ +

∥∥∥ ν√
κ

(F − y · n)
∥∥∥2

L2(ΓN )

)1/2

×
(
‖λ(u− v)‖2

L2(Ω) + |||∇(u− v)|||2 + ‖
√
κ(u− v)‖2

L2(ΓN )

)1/2

+
(
C1(1− µ)‖rΩ(v, y)‖L2(Ω) + C2(1− ν)‖(F − y · n)‖L2(ΓN )

)
|||∇(u− v)|||,

which implies

|[u− v]| 6
(∥∥∥µ
λ
rΩ(v, y)

∥∥∥2

L2(Ω)
+ |||y − A∇v|||2∗ +

∥∥∥ ν√
κ

(F − y · n)
∥∥∥2

L2(ΓN )

)1/2

+ C1(1− µ)‖rΩ(v, y)‖L2(Ω) + C2(1− ν)‖(F − y · n)‖L2(ΓN ). (3.8)

The right-hand side of the general error majorant (3.8) contains three free parameters µ, ν,
and y. It can be optimized with respect to them based on some numerical approximation
uh of the model problem (2.6).

In the following subsection, we demonstrate particular representations of this estimate
which can be advantageous for different parameter settings of the reaction-convection-dif-
fusion problem.

3.2. Particular Cases of the Error Majorant

One obtains particular forms of (3.8) by specific choices for the parameters µ and ν.

(a) For λ2 < 1 and κ < 1, one can choose µ = λ and ν =
√
κ. It follows

|[u− v]| 6
(
‖rΩ(v, y)‖2

L2(Ω) + |||y − A∇v|||2∗ + ‖(F − y · n)‖2
L2(ΓN )

)1/2

+ C1‖(1− λ)rΩ(v, y)‖L2(Ω) + C2‖(1−
√
κ)(F − y · n)‖L2(ΓN ).

(b) If the parameters λ2 and κ exhibit large oscillations, the choice µ = ν = 0 can be
beneficial. In this case, we obtain

|[u− v]| 6 |||y − A∇v|||∗ + C1‖rΩ(v, y)‖L2(Ω) + C2‖(F − y · n)‖L2(ΓN ).

This estimate does not contain λ2 and κ to some negative power and, hence, is stable
even for small values of these parameters.



142 Martin Eigel, Tatiana Samrowski

(c) If the parameters λ2 and κ exhibit large oscillations, one can additionally set ν =
√
κ

and µ = λ in those parts of Ω where λ2 and κ are small, e.g., see [14].

(d) Setting µ = ν = 1, we obtain

|[u− v]| 6
(∥∥∥1

λ
rΩ(v, y)

∥∥∥2

L2(Ω)
+ |||y − A∇v|||2∗ +

∥∥∥ 1√
κ

(F − y · n)
∥∥∥2

L2(ΓN )

)1/2

,

which is advantageous for reaction-convection-diffusion problems with dominant con-
vection term. This estimation does not contain the constants from the trace and
Friedrichs’ inequalities and thus can be employed to obtain guaranteed bounds in
many applications. Furthermore, it contains the constant c1 to some negative power.

3.3. An Advanced Form of the Error Majorant

In practical applications it is useful to have an error estimation which is stable with respect
to small values of λ2 and κ but at the same time is applicable to problems with dominant
convection. Such an error estimate is the main result in this paper.

Theorem 3.1 (A guaranteed stable energy norm a posteriori error estimator). Let u be the
exact solution of problem (2.1) and let v ∈ V0 +u0, y ∈ H(Ω, div) and α, β ∈ R be arbitrary.
Then

|[u− v]|2 6M2
Ω(v, y, α, β) := ηNB + ηDF + ηRES, (3.9)

where the first term of the right-hand side comes from the boundary value estimation and is
defined by

ηNB := (1 + α)(1 + β)

∫
ΓN

C2
2(F − y · n)2

α(1 + β) + κC2
2

ds.

The second term is related to the diffusion flux estimator and is given by

ηDF := (1 + α)(1 + β)|||y − A∇v|||2∗.

The third term is a measure of the residual of the differential equation computed for an
approximate solution v and a “flux” y and is defined by

ηRES := (1 + α)(1 + β)

∫
Ω

C2
1r

2
Ω(v, y)

β + λ2C2
1

dx.

Proof. To prove the theorem, we minimize the right-hand side of (3.8) with respect to the
parameters µ and ν. We square the sum of the first two terms of (3.8) and employ Young’s
inequality with some positive β and note that the minimum of

(1 + β)µ2

∫
Ω

1

λ2
r2

Ω(v, y) dx+
(

1 +
1

β

)
C2

1(1− µ)2

∫
Ω

r2
Ω(v, y) dx

with regard to µ is equal to ∫
Ω

(β + 1)C2
1r

2
Ω(v, y)

β + λ2C2
1

dx.

This leads to

|[u− v]| 6

√
(1 + β)

(
|||y − A∇v|||2∗ + ν2

∫
ΓN

1

κ
(F − y · n)2 ds+

∫
Ω

C2
1r

2
Ω(v, y)

β + λ2C2
1

dx
)

+ C2(1− ν)‖(F − y · n)‖L2(ΓN ). (3.10)
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In order to optimize (3.10) with respect to ν, we again apply Young’s inequality with a
positive parameter and consider the terms containing the function ν. A straightforward
calculation of the minimum of

(1 + α)ν2

∫
ΓN

1 + β

κ
(F − y · n)2 ds+

(
1 +

1

α

)
C2

2(1− ν)2

∫
ΓN

(F − y · n)2 ds

concludes the proof.

3.4. Computation of the Majorant

To estimate the energy norm |[u − v]|, we need to evaluate the terms in (3.9) to obtain
some flux approximation y as well as parameters α and β. For the diffusion equation,
methods for the determination of β and the flux approximation y based on some discrete
solution v have already been discussed in the literature (e.g., see [13,19,20,22,25]). Below we
briefly discuss the application of these methods to our case. We emphasize that any choice
(α, β, y) ⊂ R × R × H(Ω, div) in the error majorant (3.9) results in a guaranteed upper
bound of the error. However, sharp estimates require a sensible choice of these quantities.
Moreover, a strategy needs to be devised which balances the extra computational cost with
the benefit of sharper estimates. A possible approach is presented in this section.

If the values of A, a, F , f , and CΩ are known thenM2
Ω(v, y, α, β) is a quadratic functional

with respect to y. Our goal is to find some discrete yh ∈ V 2
h ∩H(Ω, div) and α, β ∈ R such

that M2
Ω(v, yh, α, β) is close to the minimum over y ∈ H(Ω, div). Minimization with re-

spect to α and β is an algebraic problem. We introduce some additional notation for the
corresponding iterative algorithm.

For every vertex z ∈ N of the triangulation Th, denote by Pz := {τ ∈ Th : z ∈ τ}
the neighboring elements. Moreover, y(0)

h ∈ V 2
h is defined implicitly from the patchwise flux

averaging by the nodal condition

y
(0)
h (z) :=

1

|ωz|

∫
ωz

A∇v dx.

For all vertices zj ∈ N , 1 6 j 6 N , letM2
Ω,ωzj

(v, yh, α, β) be the contribution of the patch
ωzj to the majorantM2

Ω(v, yh, α, β). Algorithm 1 carries out a global optimization procedure
in order to determine appropriate parameters for the error estimator.

Algorithm 1: Global minimization of the error majorant.
input : iterations νmax > 0
output: error majorantM2

Ω

y
(0)
h (z)← 1

|ωz |

∫
ωz
A∇v dx

α(0) ← 1

β(0) ← 1
for ν = 1, . . . , νmax do

1 y
(ν)
h ← argminw∈V 2

h
M2

Ω(v, w, α(ν−1), β(ν−1))

2 α(ν) ← argminα∈R+
M2

Ω(v, yνh, α, β
(ν−1))

3 β(ν) ← argminβ∈R+
M2

Ω(v, yνh, α
(ν), β)

end
CalculateM2

Ω(v, y
(νmax)
h , α(νmax), β(νmax))
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WithM2
Ω(v, y, α, β) from (3.9), a minimization with respect to α according to line 2 in

Algorithm 1 yields the relation∫
ΓN

C2
2(F − y · n)2(κC2

2 − 1− β)

(α(β + 1) + κC2
2)2

ds = −
∫

Ω

C2
1r

2
Ω(v, y)

β + λ2C2
1

dx− |||y − A∇v|||2∗.

Similarly, for β in line 3 of Algorithm 1, we obtain∫
ΓN

C4
2κ(F − y · n)2

(α(β + 1) + κC2
2)2

ds+

∫
Ω

C2
1r

2
Ω(v, y)(λ2C2

1 − 1)

(β + λ2C2
1)2

dx = −|||y − A∇v|||2∗.

A minimization ofM2
Ω(v, y, α, β) with respect to y according to line 1 in Algorithm 1 reveals∫

ΓN

C2
2〈y · n, η · n〉

α(1 + β) + κC2
2

+

∫
Ω

〈A−1y, η〉+

∫
Ω

C2
1〈div y, div η〉
β + λ2C2

1

=

∫
ΓN

C2
2〈F, η · n〉

α(1 + β) + κC2
2

+

∫
Ω

〈∇uh, η〉 −
∫

Ω

C2
1〈f̃ , div η〉
β + λ2C2

1

(3.11)

with test functions η and f̃ := f−a·∇v−ρ2v. We note that the global minimization in line 1
of Algorithm 1 requires the assembly and solution of a linear system (3.11) of dimension 2N .
On the one hand, we expect that the computational costs are of the same order as the cost
to compute the discrete solution v. On the other hand, one could save memory (at the
expense of less sharp estimates) if line 1 in Algorithm 1 would be replaced by a few steps of
a Gauss–Seidel type iteration from line 1 of Algorithm 2.

In the following, an algorithm based on the solution of local minimization problems is
depicted.

Algorithm 2: Local minimization of the error majorant.
input : iterations νmax, ιmax > 0
output: error majorantM2

Ω

y
(0)
h (z)← 1

|ωz |

∫
ωz
A∇v dx

α(0) ← 1

β(0) ← 1
for ν = 1, . . . , νmax do

γ
(0)
N ← y

(ν−1)
h

1 for i = 1, . . . , ιmax do
γ

(i)
0 ← γ

(i−1)
N

for j = 1, . . . , N do
vj ← argminw∈S2

j
M2

Ω,ωzj
(v, γ

(i)
j−1 + w, α(ν−1), β(ν−1))

γ
(i)
j ← γ

(i)
j−1 + wj

end
end
y

(ν)
h ← γ

(ιmax)
N

α(ν) ← argminα∈R+
M2

Ω(v, yνh, α, β
(ν−1))

β(ν) ← argminβ∈R+
M2

Ω(v, yνh, α
(ν), β)

end
CalculateM2

Ω(v, y
(νmax)
h , α(νmax), β(νmax))
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4. Numerical Examples

In this section, we present numerical examples for different coefficients which illustrate the
performance of the a posteriori error estimator derived in Section 3. The chosen test cases
can also be found in [7, 10,15] which allows a direct comparison of the results.

For the numerical examples, we consider the second order equation (2.1) on the unit
square Ω = (0, 1) × (0, 1) with different diffusion values A and specific convection a and
adsorption ρ2 data such that the analytic solution is known. We focus on the more difficult
and interesting case of dominant convection since the purely elliptic case has been treated
exhaustively in previous publications. The Dirichlet boundary conditions are defined by
some admissible sufficiently smooth u0. In order to avoid instabilities due to dominating
convection, the streamline diffusion method described in Section 2.2 is employed throughout.

In all numerical examples of the next subsections, the bulk marking (also known as
Dörfler or greedy marking) based on the functional error estimatorMΩ is applied. For some
bulk parameter 0 < Θ < 1, the algorithm finds the smallest set of triangles τ ⊂ T such that

Θ
∑
T∈T

MΩ(T ) 6
∑
T∈τ

MΩ(T ).

Here,MΩ(T ) :=MΩ|T is the restriction of the estimator onto any triangle T ∈ T . Different
marking strategies are possible and can lead to differently adapted meshes, see [15] for a
study of several algorithms. The mesh is refined at least for the elements in τ with possible
additional refinements to re-establish conformity of the mesh.

For the numerical results in this section, we assume Θ = 0.4 and use Algorithm 1. We
set α = 0.0001 and choose

β =
( 1− λ2C2

1

|||y − A∇v|||2∗

)1/2

C1‖rΩ(v, y)‖L2(Ω) − λ2C2
1

for the minimization in line 3 of Algorithm 1.

4.1. Example 1

We consider problem (2.1) for the diffusion A = ζI with different values ζ ∈ R, a = (2, 3)T ,
ρ2 = 2, identity matrix I and ΓD = ∂Ω. The right-hand side and boundary conditions are
chosen such that the exact solution is given by

u(x, y) = 16x(1− x)y(1− y)
(1

2
+

1

π
atan

( 2√
A

( 1

16
−
(
x− 1

2

)2

−
(
y − 1

2

)2)))
.

The solution is plotted in Figure 1 (left). It exhibits a circular inner layer where the gradient
depends on the diffusion and behaves like O(ζ−1/2).

Figure 2 shows the performance of the functional error estimator for different diffusion
values, A ∈ {10−2I, 10−4I}.

We observe that in both cases the functional error estimator quickly exhibits optimal
convergence rates. The efficiency index is close to 1 for A = 10−2I with 105 degrees of
freedom and gets close to 10 for A = 10−4I. In the energy norm, this dependence on the
Péclet number is to be expected, see [7]. The plot of the adaptively refined mesh in Figure 1
(right) illustrates that the inner layer is resolved accurately. In Figure 3, the spatial error
distribution as given by the error estimator and the exact solution is plotted. It shows a
close resemblance qualitatively.
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Figure 1. Example 1 solution (left) and adaptively refined mesh (right).
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Figure 2. Energy error versus degrees of freedom for adaptive refinement: Example 1 with A = 10−2I (left)
and A = 10−4I (right).
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Figure 3. Error distribution in energy norm for Example 1 with A = 10−4I after seven iterations of the
adaptive algorithm. Exact error (left) and error estimator (right); lighter color indicates larger error.
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Figure 4. Example 2 solution (left) and refined mesh (right).

4.2. Example 2

We consider problem (2.1) with different values for ζ, a = (1, 0)T , ρ2 = 1 and ΓD = ∂Ω. The
right-hand side and boundary conditions are chosen such that the solution is given by

u(x, y) =
1

2
x(1− x)y(y − 1)

(
1− tanh(10− 20x)

)
.

The solution on an adaptively refined mesh is plotted in Figure 4 (right). The steep vertical
gradient at the center of the domain is refined strongly.

Figure 5 shows the performance of the functional error estimator for different diffusion
values, A ∈ {10−2I, 10−4I}.

The numerical results are comparable to the ones of Example 1. Again, the interior layer
with steep gradients is resolved accurately. Moreover, the functional error estimator MΩ

quickly reaches a good efficiency with respect to the Péclet number of the problem. Figure 6
depicts the spatial error distribution as given by the error estimator and the exact solution.
Again, we see a close resemblance qualitatively.

4.3. Example 3

We consider problem (2.1) with A = 10−2I, a = (2, 3)T , ρ2 = 1 and ΓD = ∂Ω. The
right-hand side and boundary conditions are chosen such that the solution is given by

u(x, y) = xy2 − y2 exp
(2(x− 1)

A

)
− x exp

(3(y − 1)

A

)
+ exp

(2(x− 1) + 3(y − 1)

A

)
.

The discrete solution on an adaptively refined mesh is plotted in Figure 7 (left). It exhibits
boundary layers at the top and right-hand side of the domain. These layers are accurately
resolved by the adaptive algorithm based on the functional error estimatorMΩ.

The convergence plots in Figure 7 (right) illustrate the stability of the functional error
estimator. The error estimatorMΩ exhibits optimal convergence rates almost immediately.
Its efficiency is close to 1 even for relatively few degrees of freedom. Note that the boundary
layers first have to be resolved sufficiently for the energy error to decrease significantly.
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Figure 5. Energy error versus degrees of freedom for adaptive refinement: Example 2 with A = 10−2I (left)
and A = 10−4I (right).
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Figure 6. Error distribution in energy norm for Example 2 with A = 10−4I after ten iterations of the
adaptive algorithm. Exact error (left) and error estimator (right); lighter color indicates larger error.
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Figure 7. Example 3 adaptively refined mesh (left) and convergence for A = 10−2I with energy error versus
degrees of freedom (right).
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