149 research outputs found

    Digital subtraction radiographic analysis of the combination of bioabsorbable membrane and bovine morphogenetic protein pool in human periodontal infrabony defects

    Get PDF
    Objectives: This study assessed the bone density gain and its relationship with the periodontal clinical parameters in a case series of a regenerative therapy procedure. Material and Methods: Using a split-mouth study design, 10 pairs of infrabony defects from 15 patients were treated with a pool of bovine bone morphogenetic proteins associated with collagen membrane (test sites) or collagen membrane only (control sites). The periodontal healing was clinically and radiographically monitored for six months. Standardized presurgical and 6-month postoperative radiographs were digitized for digital subtraction analysis, which showed relative bone density gain in both groups of 0.034 ± 0.423 and 0.105 ± 0.423 in the test and control group, respectively (p>0.05). Results: As regards the area size of bone density change, the influence of the therapy was detected in 2.5 mm2 in the test group and 2 mm2 in the control group (p>0.05). Additionally, no correlation was observed between the favorable clinical results and the bone density gain measured by digital subtraction radiography (p>0.05). Conclusions: The findings of this study suggest that the clinical benefit of the regenerative therapy observed did not come with significant bone density gains. Long-term evaluation may lead to a different conclusions

    Nonsurgical and surgical periodontal therapy in single-rooted teeth

    Get PDF
    The purpose of this study was to compare the effect of tooth related and patient related factors on the success of non-surgical and surgical periodontal therapy. In 41 patients (22 female) with untreated and/or recurrent periodontitis, no therapy, scaling and root planing (SRP), or access flap (AF) were assigned according to probing pocket depth (PPD). PPD and vertical relative attachment level (RAL-V) were obtained initially, 3 and 6 months after therapy. Baseline data were compared according to therapy, jaw, tooth type, and site. Factors influencing clinical parameters were identified using multilevel analyses. Baseline PPDs were deeper interproximally, in the maxilla and at premolars compared to buccal/oral sites, mandibular, and anterior teeth. At 6 months, PPD reduction and RAL-V gain were significantly greater at sites receiving SRP and AF as compared to untreated sites (p < 0.001). PPD reduction and RAL-V gain were significantly less (p < 0.005) in smokers as compared to nosmokers and at interproximal sites (p < 0.0001) as compared to buccal/oral sites. RAL-V gain was less in aggressive periodontitis, and PPD reduction was less in the maxilla (p < 0.001). In sites with greater bone loss and infrabony defects, a poorer response was observed regarding RAL-V gain or PPD reduction, respectively. The conclusions of the study are the following: (1) Nonsurgical and surgical periodontal therapies are effective in single-rooted teeth; (2) severe interproximal bone loss and infrabony defects deteriorate clinical results; and (3) there seem to be more defect-associated (tooth, site) factors influencing treatment outcome than patient-associated factors

    Effect of Periodontal Treatment on HbA1c among Patients with Prediabetes

    Get PDF
    Evidence is limited regarding whether periodontal treatment improves hemoglobin A1c (HbA1c) among people with prediabetes and periodontal disease, and it is unknown whether improvement of metabolic status persists >3 mo. In an exploratory post hoc analysis of the multicenter randomized controlled trial “Antibiotika und Parodontitis” (Antibiotics and Periodontitis)—a prospective, stratified, double-blind study—we assessed whether nonsurgical periodontal treatment with or without an adjunctive systemic antibiotic treatment affects HbA1c and high-sensitivity C-reactive protein (hsCRP) levels among periodontitis patients with normal HbA1c (≤5.7%, n = 218), prediabetes (5.7% 1 mm in both groups. In the normal HbA1c group, HbA1c values remained unchanged at 5.0% (95% CI, 4.9% to 6.1%) during the observation period. Among periodontitis patients with prediabetes, HbA1c decreased from 5.9% (95% CI, 5.9% to 6.0%) to 5.4% (95% CI, 5.3% to 5.5%) at 15.5 mo and increased to 5.6% (95% CI, 5.4% to 5.7%) after 27.5 mo. At 27.5 mo, 46% of periodontitis patients with prediabetes had normal HbA1c levels, whereas 47.9% remained unchanged and 6.3% progressed to diabetes. Median hsCRP values were reduced in the normal HbA1c and prediabetes groups from 1.2 and 1.4 mg/L to 0.7 and 0.7 mg/L, respectively. Nonsurgical periodontal treatment may improve blood glucose values among periodontitis patients with prediabetes (ClinicalTrials.gov NCT00707369)

    In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different types of bioabsorbable and nonresorbable membranes have been widely used for guided tissue regeneration (GTR) with its ultimate goal of regenerating lost periodontal structures. The purpose of the present study was to evaluate the biological effects of various bioabsorbable and nonresorbable membranes in cultures of primary human gingival fibroblasts (HGF), periodontal ligament fibroblasts (PDLF) and human osteoblast-like (HOB) cells <it>in vitro</it>.</p> <p>Methods</p> <p>Three commercially available collagen membranes [TutoDent<sup>® </sup>(TD), Resodont<sup>® </sup>(RD) and BioGide<sup>® </sup>(BG)] as well as three nonresorbable polytetrafluoroethylene (PTFE) membranes [ACE (AC), Cytoplast<sup>® </sup>(CT) and TefGen-FD<sup>® </sup>(TG)] were tested. Cells plated on culture dishes (CD) served as positive controls. The effect of the barrier membranes on HGF, PDLF as well as HOB cells was assessed by the Alamar Blue fluorometric proliferation assay after 1, 2.5, 4, 24 and 48 h time periods. The structural and morphological properties of the membranes were evaluated by scanning electron microscopy (SEM).</p> <p>Results</p> <p>The results showed that of the six barriers tested, TD and RD demonstrated the highest rate of HGF proliferation at both earlier (1 h) and later (48 h) time periods (<it>P </it>< 0.001) compared to all other tested barriers and CD. Similarly, TD, RD and BG had significantly higher numbers of cells at all time periods when compared with the positive control in PDLF culture (<it>P </it>≤ 0.001). In HOB cell culture, the highest rate of cell proliferation was also calculated for TD at all time periods (<it>P </it>< 0.001). SEM observations demonstrated a microporous structure of all collagen membranes, with a compact top surface and a porous bottom surface, whereas the nonresorbable PTFE membranes demonstrated a homogenous structure with a symmetric dense skin layer.</p> <p>Conclusion</p> <p>Results from the present study suggested that GTR membrane materials, per se, may influence cell proliferation in the process of periodontal tissue/bone regeneration. Among the six membranes examined, the bioabsorbable membranes demonstrated to be more suitable to stimulate cellular proliferation compared to nonresorbable PTFE membranes.</p

    Treatment of stage I-III periodontitis-The EFP S3 level clinical practice guideline

    Get PDF
    Background: The recently introduced 2017 World Workshop on the classification of periodontitis, incorporating stages and grades of disease, aims to link disease classification with approaches to prevention and treatment, as it describes not only disease severity and extent but also the degree of complexity and an individual's risk. There is, therefore, a need for evidence-based clinical guidelines providing recommendations to treat periodontitis. Aim: The objective of the current project was to develop a S3 Level Clinical Practice Guideline (CPG) for the treatment of Stage I–III periodontitis. Material and Methods: This S3 CPG was developed under the auspices of the European Federation of Periodontology (EFP), following the methodological guidance of the Association of Scientific Medical Societies in Germany and the Grading of Recommendations Assessment, Development and Evaluation (GRADE). The rigorous and transparent process included synthesis of relevant research in 15 specifically commissioned systematic reviews, evaluation of the quality and strength of evidence, the formulation of specific recommendations and consensus, on those recommendations, by leading experts and a broad base of stakeholders. Results: The S3 CPG approaches the treatment of periodontitis (stages I, II and III) using a pre-established stepwise approach to therapy that, depending on the disease stage, should be incremental, each including different interventions. Consensus was achieved on recommendations covering different interventions, aimed at (a) behavioural changes, supragingival biofilm, gingival inflammation and risk factor control; (b) supra- and sub-gingival instrumentation, with and without adjunctive therapies; (c) different types of periodontal surgical interventions; and (d) the necessary supportive periodontal care to extend benefits over time. Conclusion: This S3 guideline informs clinical practice, health systems, policymakers and, indirectly, the public on the available and most effective modalities to treat periodontitis and to maintain a healthy dentition for a lifetime, according to the available evidence at the time of publication

    Prevention and treatment of peri-implant diseases—The EFP S3 level clinical practice guideline

    Get PDF
    Background: The recently published Clinical Practice Guidelines (CPGs) for the treatment of stages I–IV periodontitis provided evidence-based recommendations for treating periodontitis patients, defined according to the 2018 classification. Peri-implant diseases were also re-defined in the 2018 classification. It is well established that both peri-implant mucositis and peri-implantitis are highly prevalent. In addition, peri-implantitis is particularly challenging to manage and is accompanied by significant morbidity. Aim: To develop an S3 level CPG for the prevention and treatment of peri-implant diseases, focusing on the implementation of interdisciplinary approaches required to prevent the development of peri-implant diseases or their recurrence, and to treat/rehabilitate patients with dental implants following the development of peri-implant diseases. Materials and Methods: This S3 level CPG was developed by the European Federation of Periodontology, following methodological guidance from the Association of Scientific Medical Societies in Germany and the Grading of Recommendations Assessment, Development and Evaluation process. A rigorous and transparent process included synthesis of relevant research in 13 specifically commissioned systematic reviews, evaluation of the quality and strength of evidence, formulation of specific recommendations, and a structured consensus process involving leading experts and a broad base of stakeholders. Results: The S3 level CPG for the prevention and treatment of peri-implant diseases culminated in the recommendation for implementation of various different interventions before, during and after implant placement/loading. Prevention of peri-implant diseases should commence when dental implants are planned, surgically placed and prosthetically loaded. Once the implants are loaded and in function, a supportive peri-implant care programme should be structured, including periodical assessment of peri-implant tissue health. If peri-implant mucositis or peri-implantitis are detected, appropriate treatments for their management must be rendered. Conclusion: The present S3 level CPG informs clinical practice, health systems, policymakers and, indirectly, the public on the available and most effective modalities to maintain healthy peri-implant tissues, and to manage peri-implant diseases, according to the available evidence at the time of publication

    Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium::Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions

    Get PDF
    Periodontal health is defined by absence of clinically detectable inflammation. There is a biological level of immune surveillance that is consistent with clinical gingival health and homeostasis. Clinical gingival health may be found in a periodontium that is intact, i.e. without clinical attachment loss or bone loss, and on a reduced periodontium in either a non-periodontitis patient (e.g. in patients with some form of gingival recession or following crown lengthening surgery) or in a patient with a history of periodontitis who is currently periodontally stable. Clinical gingival health can be restored following treatment of gingivitis and periodontitis. However, the treated and stable periodontitis patient with current gingival health remains at increased risk of recurrent periodontitis, and accordingly, must be closely monitored. Two broad categories of gingival diseases include non-dental plaque biofilm-induced gingival diseases and dental plaque-induced gingivitis. Non-dental plaque biofilm-induced gingival diseases include a variety of conditions that are not caused by plaque and usually do not resolve following plaque removal. Such lesions may be manifestations of a systemic condition or may be localized to the oral cavity. Dental plaque-induced gingivitis has a variety of clinical signs and symptoms, and both local predisposing factors and systemic modifying factors can affect its extent, severity, and progression. Dental plaque-induced gingivitis may arise on an intact periodontium or on a reduced periodontium in either a non-periodontitis patient or in a currently stable "periodontitis patient" i.e. successfully treated, in whom clinical inflammation has been eliminated (or substantially reduced). A periodontitis patient with gingival inflammation remains a periodontitis patient (Figure 1), and comprehensive risk assessment and management are imperative to ensure early prevention and/or treatment of recurrent/progressive periodontitis. Precision dental medicine defines a patient-centered approach to care, and therefore, creates differences in the way in which a "case" of gingival health or gingivitis is defined for clinical practice as opposed to epidemiologically in population prevalence surveys. Thus, case definitions of gingival health and gingivitis are presented for both purposes. While gingival health and gingivitis have many clinical features, case definitions are primarily predicated on presence or absence of bleeding on probing. Here we classify gingival health and gingival diseases/conditions, along with a summary table of diagnostic features for defining health and gingivitis in various clinical situations
    corecore