6 research outputs found

    Tolerance-Based Demand-Side Management for Load Shifting in Rural Areas of Southern Brazil

    No full text
    In the rural regions of southern Brazil, electricity is largely directed to irrigation activities on rice crops at restricted periods of the year. Typically, customers in these regions are called “irrigators”, and have some characteristics different from loads in urban centers, such as high demand levels and sharp load variations. These characteristics can result in problems of excessive loading on distribution grids at certain times of the day, generating concerns for the power utilities in relation to the security of the electrical system, energy supply to customers, and the integrity of electrical equipment. An alternative to avoid or mitigate these possible problems may be the application of a demand management model to irrigator customers. In this context, a load shifting strategy can be inserted to reduce demand in more critical periods and move it to intervals with lower load on the power grid. In this context, this article presents a demand-side management methodology in distribution systems located in rural areas, employing the load shifting strategy for irrigator customers. The methodology proposed in this paper is not an entirely novel approach, but one specifically developed for the context of irrigator customers, a subject little studied in the literature. The load management model proposed by this study is segmented into three hierarchical levels. The first level is the identification of the electrical characteristics of the distribution systems, the second level is the power flow analysis of the distribution networks, and the third and last level consists in the application of load shifting to the irrigator customers of these electrical systems. The load shifting strategy is modeled by a linear programming algorithm and is only applied to irrigator customers in situations of excessive loading on power grid. The case studies were conducted on three distribution systems of a power utility, with more than 150 irrigator customers. The DSM model based on the load shifting strategy reduced the maximum demand and daily load variations on the three rural feeders evaluated. The proposed changes in load patterns can ensure the continuity of electric power supply service in future even with the high concentration of load on distribution networks, benefiting customers and power utilities

    Primary infection with dengue or Zika virus does not affect the severity of heterologous secondary infection in macaques.

    No full text
    Zika virus (ZIKV) and dengue virus (DENV) are genetically and antigenically related flaviviruses that now co-circulate in much of the tropical and subtropical world. The rapid emergence of ZIKV in the Americas in 2015 and 2016, and its recent associations with Guillain-Barré syndrome, birth defects, and fetal loss have led to the hypothesis that DENV infection induces cross-reactive antibodies that influence the severity of secondary ZIKV infections. It has also been proposed that pre-existing ZIKV immunity could affect DENV pathogenesis. We examined outcomes of secondary ZIKV infections in three rhesus and fifteen cynomolgus macaques, as well as secondary DENV-2 infections in three additional rhesus macaques up to a year post-primary ZIKV infection. Although cross-binding antibodies were detected prior to secondary infection for all animals and cross-neutralizing antibodies were detected for some animals, previous DENV or ZIKV infection had no apparent effect on the clinical course of heterotypic secondary infections in these animals. All animals had asymptomatic infections and, when compared to controls, did not have significantly perturbed hematological parameters. Rhesus macaques infected with DENV-2 approximately one year after primary ZIKV infection had higher vRNA loads in plasma when compared with serum vRNA loads from ZIKV-naive animals infected with DENV-2, but a differential effect of sample type could not be ruled out. In cynomolgus macaques, the serotype of primary DENV infection did not affect the outcome of secondary ZIKV infection
    corecore