57 research outputs found

    Differential protein stability and clinical responses of EML4 - ALKfusion variants to various ALK inhibitors in advanced ALK - rearranged non-small cell lung cancer

    Get PDF
    BACKGROUND: Anaplastic lymphoma kinase (ALK) inhibition using crizotinib has become the standard of care in advanced ALK-rearranged non-small cell lung cancer (NSCLC), but the treatment outcomes and duration of response vary widely. Echinoderm microtubule-associated protein-like 4 (EML4)-ALK is the most common translocation, and the fusion variants show different sensitivity to crizotinib in vitro. However, there are only limited data on the specific EML4-ALK variants and clinical responses of patients to various ALK inhibitors. PATIENTS AND METHODS: By multiplex reverse-transcriptase PCR, which detects 12 variants of known EML4-ALK rearrangements, we retrospectively determined ALK fusion variants in 54 advanced ALK rearrangement-positive NSCLCs. We subdivided the patients into two groups (variants 1/2/others and variants 3a/b) by protein stability and evaluated correlations of the variant status with clinical responses to crizotinib, alectinib, or ceritinib. Moreover, we established the EML4-ALK variant-expressing system and analyzed patterns of sensitivity of the variants to ALK inhibitors. RESULTS: Of the 54 tumors analyzed, EML4-ALK variants 3a/b (44.4%) was the most common type, followed by variants 1 (33.3%) and 2 (11.1%). The 2-year progression-free survival (PFS) rate was 76.0% (95% confidence interval [CI] 56.8-100) in group EML4-ALK variants 1/2/others versus 26.4% (95% CI 10.5-66.6) in group variants 3a/b (P = 0.034) among crizotinib-treated patients. Meanwhile, the 2-year PFS rate was 69.0% (95% CI 49.9-95.4) in group variants 1/2/others versus 32.7% (95% CI 15.6-68.4) in group variants 3a/b (P = 0.108) among all crizotinib-, alectinib-, and ceritinib-treated patients. Variant 3a- or 5a-harboring cells were resistant to ALK inhibitors with >10-fold higher half maximal inhibitory concentration in vitro. CONCLUSION: Our findings show that group EML4-ALK variants 3a/b may be a major source of ALK inhibitor resistance in the clinic. The variant-specific genotype of the EML4-ALK fusion allows for more precise stratification of patients with advanced NSCLC

    Loss of dystrophin and the microtubule-binding protein ELP-1 causes progressive paralysis and death of adult C. elegans

    Get PDF
    This is the peer reviewed version of the following article: Hueston, J. L. and Suprenant, K. A. (2009), Loss of dystrophin and the microtubule-binding protein ELP-1 causes progressive paralysis and death of adult C. elegans. Dev. Dyn., 238: 1878–1886. doi:10.1002/dvdy.22007, which has been published in final form at http://doi.org/10.1002/dvdy.22007. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.EMAP-like proteins (ELPs) are conserved microtubule-binding proteins that function during cell division and in the behavior of post-mitotic cells. In C. elegans, ELP-1 is broadly expressed in many cells and tissues including the touch receptor neurons and body wall muscle. Within muscle, ELP-1 is associated with a microtubule network that is closely opposed to the integrin-based adhesion sites called dense bodies. To examine ELP-1 function we utilized an elp-1 RNA interference assay and screened for synthetic interactions with mutated adhesion site proteins. We reveal a synthetic lethal relationship between ELP-1 and the dystrophin-like protein, DYS-1. Reduction of ELP-1 in a dystrophin [dys-1(cx18)] mutant results in adult animals with motility defects, splayed and hypercontracted muscle with altered cholinergic signaling. Worms fill with vesicles, become flaccid and die. We conclude that ELP-1 is a genetic modifier of a C. elegans model of muscular dystrophy

    The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1

    Get PDF
    Aberrant DNA methylation is often associated with cancer and the formation of tumors; however, the underlying mechanisms, in particular the recruitment and regulation of DNA methyltransferases remain largely unknown. In this study, we identified USP7 as an interaction partner of Dnmt1 and UHRF1 in vivo. Dnmt1 and USP7 formed a soluble dimer complex that associated with UHRF1 as a trimeric complex on chromatin. Complex interactions were mediated by the C-terminal domain of USP7 with the TS-domain of Dnmt1, whereas the TRAF-domain of USP7 bound to the SRA-domain of UHRF1. USP7 was capable of targeting UHRF1 for deubiquitination and affects UHRF1 protein stability in vivo. Furthermore, Dnmt1, UHRF1 and USP7 co-localized on silenced, methylated genes in vivo. Strikingly, when analyzing the impact of UHRF1 and USP7 on Dnmt1-dependent DNA methylation, we found that USP7 stimulated both the maintenance and de novo DNA methylation activity of Dnmt1 in vitro. Therefore, we propose a dual role of USP7, regulating the protein turnover of UHRF1 and stimulating the enzymatic activity of Dnmt1 in vitro and in vivo

    A doublecortin containing microtubule-associated protein is implicated in mechanotransduction in Drosophila sensory cilia

    Get PDF
    Mechanoreceptors are sensory cells that transduce mechanical stimuli into electrical signals and mediate the perception of sound, touch and acceleration. Ciliated mechanoreceptors possess an elaborate microtubule cytoskeleton that facilitates the coupling of external forces to the transduction apparatus. In a screen for genes preferentially expressed in Drosophila campaniform mechanoreceptors, we identified DCX-EMAP, a unique member of the EMAP family (echinoderm–microtubule-associated proteins) that contains two doublecortin domains. DCX-EMAP localizes to the tubular body in campaniform receptors and to the ciliary dilation in chordotonal mechanoreceptors in Johnston's organ, the fly's auditory organ. Adult flies carrying a piggyBac insertion in the DCX-EMAP gene are uncoordinated and deaf and display loss of mechanosensory transduction and amplification. Electron microscopy of mutant sensilla reveals loss of electron-dense materials within the microtubule cytoskeleton in the tubular body and ciliary dilation. Our results establish a catalogue of candidate genes for Drosophila mechanosensation and show that one candidate, DCX-EMAP, is likely to be required for mechanosensory transduction and amplification

    Xenopus Meiotic Microtubule-Associated Interactome

    Get PDF
    In metazoan oocytes the assembly of a microtubule-based spindle depends on the activity of a large number of accessory non-tubulin proteins, many of which remain unknown. In this work we isolated the microtubule-bound proteins from Xenopus eggs. Using mass spectrometry we identified 318 proteins, only 43 of which are known to bind microtubules. To integrate our results, we compiled for the first time a network of the meiotic microtubule-related interactome. The map reveals numerous interactions between spindle microtubules and the newly identified non-tubulin spindle components and highlights proteins absent from the mitotic spindle proteome. To validate newly identified spindle components, we expressed as GFP-fusions nine proteins identified by us and for first time demonstrated that Mgc68500, Loc398535, Nif3l1bp1/THOC7, LSM14A/RAP55A, TSGA14/CEP41, Mgc80361 and Mgc81475 are associated with spindles in egg extracts or in somatic cells. Furthermore, we showed that transfection of HeLa cells with siRNAs, corresponding to the human orthologue of Mgc81475 dramatically perturbs spindle formation in HeLa cells. These results show that our approach to the identification of the Xenopus microtubule-associated proteome yielded bona fide factors with a role in spindle assembly

    Evaluating RASSF1

    No full text
    corecore