1,063 research outputs found

    Targeted immune interventions for type 1 diabetes: not as easy as it looks!

    Get PDF
    PURPOSE OF REVIEW: Although insulin is lifesaving and sustaining for those with type 1 diabetes (T1D), curing the disease will be much more complex than simple replacement of this hormone. T1D is an autoimmune disease orchestrated by T cells, and includes many arms of the immune response. Tremendous effort has gone into understanding its underlying immune, genetic, and environmental causes, and this progress has led to immunologically based clinical trials in T1D. This review will focus primarily on the clinical trials of the past decade that have attempted to translate these fundamental findings. RECENT FINDINGS: It is known that powerful, nonspecific immune suppressants can temporarily slow the course of newly diagnosed T1D, yet are too toxic for long-term use, especially in children. Recent clinical trials to reverse T1D have used newly developed therapies that target specific components of the immune process believed to be involved with T1D. Although well justified and designed, no recent approach has resulted in clinical remission and few have had any effect on disease course. SUMMARY: Advances in our fundamental understanding of how the human diabetes immune response is activated and regulated coupled with lessons that have been learnt from the most recent era of completed trials are guiding us toward the development of more effective, multipronged therapies to ablate diabetes autoimmunity, restore immune tolerance, preserve β cells, and, ultimately, improve the lives of patients with T1D

    Mycosin-1, a subtilisin-like serine protease of Mycobacterium tuberculosis, is cell wall-associated and expressed during infection of macrophages

    Get PDF
    BACKGROUND: Exported proteases are commonly associated with virulence in bacterial pathogens, yet there is a paucity of information regarding their role in Mycobacterium tuberculosis. There are five genes (mycP1-5) present within the genome of Mycobacterium tuberculosis H37Rv that encode a family of secreted, subtilisin-like serine proteases (the mycosins). The gene mycP1 (encoding mycosin-1) was found to be situated 3700 bp (four ORF's) from the RD1 deletion region in the genome of the attenuated vaccine strain M. bovis BCG (bacille de Calmette et Guérin) and was selected for further analyses due to the absence of expression in this organism. RESULTS: Full-length, 50 kDa mycosin-1 was observed in M. tuberculosis cellular lysates, whereas lower-molecular-weight species were detected in culture filtrates. A similar lower-molecular-weight species was also observed during growth in macrophages. Mycosin-1 was localized to the membrane and cell wall fractions in M. tuberculosis by Western blotting, and to the cell envelope by electron microscopy. Furthermore, M. tuberculosis culture filtrates were shown to contain a proteolytic activity inhibited by mixed serine/cysteine protease inhibitors and activated by Ca(2+), features typical of the subtilisins. CONCLUSIONS: Mycosin-1 is an extracellular protein that is membrane- and cell wall-associated, and is shed into the culture supernatant. The protein is expressed after infection of macrophages and is subjected to proteolytic processing. Although proteolytically active mycosin-1 could not be generated recombinantly, serine protease activity containing features typical of the subtilisins was detected in M. tuberculosis culture filtrates

    Identification of N -Linked Glycosylation Sites in Human Testis Angiotensin-converting Enzyme and Expression of an Active Deglycosylated Form

    Get PDF
    The sites of glycosylation of Chinese hamster ovary cell expressed testicular angiotensin-converting enzyme (tACE) have been determined by matrix-assisted laser desorption ionization/time of flight/mass spectrometry of peptides generated by proteolytic and cyanogen bromide digestion. Two of the seven potential N-linked glycosylation sites, Asn90 and Asn109, were found to be fully glycosylated by analysis of peptides before and after treatment with a series of glycosidases and with endoproteinase Asp-N. The mass spectra of the glycopeptides exhibit characteristic clusters of peaks which indicate the N-linked glycans in tACE to be mostly of the biantennary, fucosylated complex type. This structural information was used to demonstrate that three other sites, Asn155, Asn337, and Asn586, are partially glycosylated, whereas Asn72 appears to be fully glycosylated. The only potential site that was not modified is Asn620. Sequence analysis of tryptic peptides obtained from somatic ACE (human kidney) identified six glycosylated and one unglycosylated Asn. Only one of these glycosylation sites had a counterpart in tACE. Comparison of the two proteins reveals a pattern in which amino-terminal N-linked sites are preferred. The functional significance of glycosylation was examined with a tACE mutant lacking the O-glycan-rich first amino-terminal 36 residues and truncated at Ser625. When expressed in the presence of the alpha-glucosidase I inhibitor N-butyldeoxynojirimycin and treated with endoglycosidase H to remove all but the terminal N-acetylglucosamine residues, it retained full enzymatic activity, was electrophoretically homogeneous, and is a good candidate for crystallographic studies

    Beta cell function in type 1 diabetes determined from clinical and fasting biochemical variables

    Get PDF
    AIMS/HYPOTHESIS: Beta cell function in type 1 diabetes is commonly assessed as the average plasma C-peptide concentration over 2 h following a mixed-meal test (CPAVE). Monitoring of disease progression and response to disease-modifying therapy would benefit from a simpler, more convenient and less costly measure. Therefore, we determined whether CPAVE could be reliably estimated from routine clinical variables. METHODS: Clinical and fasting biochemical data from eight randomised therapy trials involving participants with recently diagnosed type 1 diabetes were used to develop and validate linear models to estimate CPAVE and to test their accuracy in estimating loss of beta cell function and response to immune therapy. RESULTS: A model based on disease duration, BMI, insulin dose, HbA1c, fasting plasma C-peptide and fasting plasma glucose most accurately estimated loss of beta cell function (area under the receiver operating characteristic curve [AUROC] 0.89 [95% CI 0.87, 0.92]) and was superior to the commonly used insulin-dose-adjusted HbA1c (IDAA1c) measure (AUROC 0.72 [95% CI 0.68, 0.76]). Model-estimated CPAVE (CPEST) reliably identified treatment effects in randomised trials. CPEST, compared with CPAVE, required only a modest (up to 17%) increase in sample size for equivalent statistical power. CONCLUSIONS/INTERPRETATION: CPEST, approximated from six variables at a single time point, accurately identifies loss of beta cell function in type 1 diabetes and is comparable to CPAVE for identifying treatment effects. CPEST could serve as a convenient and economical measure of beta cell function in the clinic and as a primary outcome measure in trials of disease-modifying therapy in type 1 diabetes

    Novel therapeutic approaches targeting the renin angiotensin system and associated peptides in hypertension and heart failure

    Get PDF
    Despite the success of renin-angiotensin system (RAS) blockade by angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 receptor (AT1R) blockers, current therapies for hypertension and related cardiovascular diseases are still inadequate. Identification of additional components of the RAS and associated vasoactive pathways, as well as new structural and functional insights into established targets, have led to novel therapeutic approaches with the potential to provide improved cardiovascular protection and better blood pressure control and/or reduced adverse side effects. The simultaneous modulation of several neurohumoral mediators in key interconnected blood pressure–regulating pathways has been an attractive approach to improve treatment efficacy, and several novel approaches involve combination therapy or dual-acting agents. In addition, increased understanding of the complexity of the RAS has led to novel approaches aimed at upregulating the ACE2/angiotensin-(1-7)/Mas axis to counter-regulate the harmful effects of the ACE/angiotensin II/angiotensin III/AT1R axis. These advances have opened new avenues for the development of novel drugs targeting the RAS to better treat hypertension and heart failure. Here we focus on new therapies in preclinical and early clinical stages of development, including novel small molecule inhibitors and receptor agonists/antagonists, less conventional strategies such as gene therapy to suppress angiotensinogen at the RNA level, recombinant ACE2 protein, and novel bispecific designer peptides

    Shedding the load of hypertension: The proteolytic processing of angiotensin-converting enzyme

    Get PDF
    A number of membrane proteins are enzymatically cleaved or ‘shed’ from the cell surface, resulting in the modulation of biological events and opening novel pharmaceutical approaches to diverse diseases by targeting shedding. Our focus has been on understanding the shedding of angiotensin-converting enzyme (ACE), an enzyme that plays a pivotal role in blood pressure regulation. The identification of novel hereditary ACE mutations that result in increased ACE shedding has advanced our understanding of the role of ACE shedding in health and disease. Extensive biochemical and molecular analysis has helped to elucidate the mechanism of ACE shedding. These findings point to the potential therapeutic role of targeting shedding in regulating tissue ACE levels in cardiovascular disease

    Targeting effector memory T cells with alefacept in new onset type 1 diabetes: 12 month results from the T1DAL study

    Get PDF
    Background Type 1 diabetes (T1D) results from autoimmune targeting of the pancreatic beta cells, likely mediated by effector memory T cells (Tems). CD2, a T cell surface protein highly expressed on Tems, is targeted by the fusion protein alefacept, depleting Tems and central memory T cells (Tcms). We hypothesized that alefacept would arrest autoimmunity and preserve residual beta cells in newly diagnosed T1D. Methods The T1DAL study is a phase II, double-blind, placebo-controlled trial that randomised T1D patients 12-35 years old within 100 days of diagnosis, 33 to alefacept (two 12-week courses of 15 mg IM per week, separated by a 12-week pause) and 16 to placebo, at 14 US sites. The primary endpoint was the change from baseline in mean 2-hour C-peptide area under the curve (AUC) at 12 months. This trial is registered with ClinicalTrials.gov, number NCT00965458. Findings The mean 2-hour C-peptide AUC at 12 months increased by 0.015 nmol/L (95% CI -0.080 to 0.110 nmol/L) in the alefacept group and decreased by 0.115 nmol/L (95% CI -0.278 to 0.047) in the placebo group, which was not significant (p=0.065). However, key secondary endpoints were met: the mean 4-hour C-peptide AUC was significantly higher (p=0.019), and daily insulin use and the rate of hypoglycemic events were significantly lower (p=0.02 and p<0.001, respectively) at 12 months in the alefacept vs. placebo groups. Safety and tolerability were comparable between groups. There was targeted depletion of Tems and Tcms, with sparing of naïve and regulatory T cells (Tregs). Interpretation At 12 months, alefacept preserved the 4-hour C-peptide AUC, lowered insulin use, and reduced hypoglycemic events, suggesting a signal of efficacy. Depletion of memory T cells with sparing of Tregs may be a useful strategy to preserve beta cell function in new-onset T1D

    Diagnosis and treatment of urticaria and angioedema: a worldwide perspective

    Get PDF
    Urticaria and angioedema are common clinical conditions representing a major concern for physicians and patients alike. The World Allergy Organization (WAO), recognizing the importance of these diseases, has contributed to previous guidelines for the diagnosis and management of urticaria. The Scientific and Clinical Issues Council of WAO proposed the development of this global Position Paper to further enhance the clinical management of these disorders through the participation of renowned experts from all WAO regions of the world. Sections on definition and classification, prevalence, etiology and pathogenesis, diagnosis, treatment, and prognosis are based on the best scientific evidence presently available. Additional sections devoted to urticaria and angioedema in children and pregnant women, quality of life and patient-reported outcomes, and physical urticarias have been incorporated into this document. It is expected that this article will supplement recent international guidelines with the contribution of an expert panel designated by the WAO, increasing awareness of the importance of urticaria and angioedema in medical practice and will become a useful source of information for optimum patient management worldwide
    • …
    corecore