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ABSTRACT 

Clay soils with a high montmorillonite content in their mineralogical composition are 

characterized by swelling and osmotic properties like biological tissues and polyelectrolyte 

gels. These phenomena are caused by the very high specific surface ( 760 m
2
/g) and the 

negative electric charge of montmorillonite lamellae, which determine an interaction with the 

charge of the ions present in the pore solution. The interest in modelling the behaviour of such 

soils is related to the evaluation of their performances as hydraulic and contaminant barriers 

in landfill and soil remediation applications. The theoretical approach of the thermodynamics 

of irreversible processes is applied to find suitable phenomenological constitutive equations, 

under the assumptions of a unidimensional geometry, infinitesimal strains of the solid 



 

 

skeleton and isothermal conditions. The approach is related to a saturated porous medium, 

whose voids are filled by an electrolyte solution containing an unspecified number of ions. To 

make the approach purely phenomenological, the parameters introduced into the constitutive 

equations are expected to be measured by macroscopic experimental tests, without any 

specification of the physical and chemical phenomena that occur at the pore scale. The 

constitutive equations allow the coupled transport and consolidation problem to be formulated 

for a clay barrier. 

 

KEY-WORDS: clay barrier, thermodynamics of irreversible processes, porous media theory, 

chemical osmosis, swelling soils. 

  



 

 

INTRODUCTION 

Over the last few years, increasing efforts have been devoted to developing alternative 

barriers for liquid and contaminant containment to traditional compacted clay layers, in order 

to obtain higher performances and reduce construction problems and costs. 

To this aim, the geosynthetics industry has put the so-called geosynthetic clay liners (GCLs) 

on the market. These are factory manufactured liners that consist of a thin layer of bentonite 

(~5-10 mm thick) which is generally sandwiched between two geotextiles (Bouazza, 2002). 

Bentonite is a clay soil that usually contains at least 70% of the three layered (2:1) clay 

mineral montmorillonite. Isomorphic substitution in montmorillonite usually results in the 

replacement of a portion of the tetravalent silicon (Si
4+

) and the trivalent aluminium (Al
3+

) in 

the crystalline structure with metals such as magnesium (Mg
2+

), having a lower valence; this 

causes a permanent negative surface charge. Montmorillonite crystals consist of parallel-

aligned elementary alumino-silicate lamellae, which are approximately 10 Å thick and 1000-

2000 Å wide, and this results in a very high specific surface ( 760 m
2
g

1
). 

As an alternative to GCLs, bentonite can be mixed with sand or clay to construct thicker 

liners: in this case, the advantage of the easy installation of GCLs is lost, but a higher shear 

strength can be obtained for the liner. 

Compacted bentonite liners are also considered for the final disposal of nuclear waste, since 

they are expected to maintain their barrier performances for centuries. 

The evaluation of the performance of bentonite as a liquid and contaminant barrier requires an 

adequate theoretical approach that is able to model the simultaneous migration of water and 

solutes, and to account  for the deformations of the solid skeleton. 

The electric interaction between the montmorillonite lamellae and the ions contained in the 

pore solution, in fact, generates macroscopic phenomena that cannot be modelled with the 

classical constitutive equations of soil mechanics (Mitchell, 1993). 



 

 

For instance, when a bentonite layer is put in equilibrium with an electrolyte solution, 

swelling or shrinkage is observed depending on the salt concentration, without any apparent 

modification of the effective stresses. Moreover, if a bentonite layer is interposed between 

two electrolyte solutions with different salt concentrations, a volumetric flux of water can be 

observed, even in the absence of a hydraulic gradient. 

The mechanical and transport behaviour of bentonites has more affinity with that of biological 

tissues, reverse-osmosis membranes, or polyelectrolyte gels than with that of sands or gravels. 

From a historical point of view, a large number of theories has been proposed to model the 

behaviour of such materials. A first fundamental distinction can be made between two 

theoretical approaches that are very different in their goals and which, opportunely combined, 

can be considered complementary. 

The first approach is called phenomenological because it is finalized to describe how the 

phenomena occur, at the macroscopic scale of observation, without explaining why. 

The second approach is called physical because it has the scope of explaining macroscopic 

phenomena on the basis of a conceptual picture of the physical and chemical interactions that 

occur at the pore scale. 

This paper is focused on the first approach with the aim of formulating the constitutive 

equations that govern the behaviour of bentonite at the macroscopic scale. In a companion 

paper (Dominijanni and Manassero, 2011), a specific physical model, based on the Donnan 

theory of equilibrium between membranes and electrolyte solutions (Donnan, 1911), is 

applied in order to interpret the phenomenological parameters. 

The reference problem concerns a horizontal clay liner that separates two electrolyte solutions 

containing different concentrations of ions (Fig. 1). The electrolyte solution at the top of the 

clay liner represents the leachate of a landfill, while the electrolyte solution at the bottom of 

the liner represents the aquifer underneath. The ion concentrations in the leachate are 



 

 

generally higher than in the groundwater, therefore a difference in ion concentrations is 

expected to establish across the liner. The same geometry can be rotated to a vertical position 

in order to represent a cut off wall built for the incapsulation of a contaminated site. 

  



 

 

PHENOMENOLOGICAL APPROACH 

The difficulty in identifying the chemical and physical mechanisms that govern the interaction 

of montmorillonite lamellae and pore fluids at the microscopic scale was the historically 

practical reason that motivated the development of a phenomenological approach, based 

simply on the experimental observations of the phenomena at the macroscopic scale (Philip 

and Smiles, 1982; Neuzil, 1986; Smiles, 2008). The theoretical framework for such an 

approach was given, at the middle of the twentieth century, by the thermodynamics of 

irreversible processes (TIP), a non-equilibrium theory based on the postulate of local state, 

which stipulates that the present state of a homogeneous system, in any evolution, can be 

characterized by the same variables as at equilibrium, and is independent of the rate of 

evolution. TIP was introduced by Eckart (1940 a,b), and successively developed by Prigogine 

(1947), Meixner and Reik (1959), and De Groot and Mazur (1962). The theory has mainly 

been applied to fluids and is able to incorporate specific constitutive laws, such as Fourier’s 

law of thermal diffusion, Navier-Stokes’ law of viscosity and Fick’s law of diffusion, in a 

consistent thermodynamic scheme. 

Staverman (1952) was the first to apply the formalism of TIP to membrane processes. He 

considered a system in which the membrane was a discontinuity between two compartments 

containing an electrolyte solution at the same temperature (Fig. 2). A steady non-equilibrium 

condition can therefore be reached between the two compartments due to the presence of such 

a discontinuity in the system. In Staverman’s original conceptual picture, the membrane was 

not a porous medium of finite thickness, but only a thermodynamic discontinuity between the 

two bulk solutions. The main result of Staverman’s analysis is that the solvent and ion mass 

fluxes can be expressed as linear functions of the differences in the electro-chemical 

potentials of the liquid components contained in the two compartments. 



 

 

The extension of Staverman’s analysis to a porous medium poses at least two problems: the 

first concerns the evaluation of the state variables of a liquid phase, i.e. the ion concentration, 

ci, the hydraulic pressure, u, and the electric potential, , within the porous medium; the 

second regards the inclusion of solid skeleton deformations. 

The first problem is probably the less obvious, and is due to the fact that when a charged 

porous medium is put in contact with a bulk electrolyte solution an equilibrium condition is 

reached, after a sufficiently long time: in this condition, the state variables are discontinuous 

between the bulk and the pore solution. This phenomenon is called partition effect 

(Yaroshchuk, 1995) and is caused by interaction between the solid skeleton and the liquid 

components at the microscopic scale. As a result, the macroscopic liquid state variables in the 

porous medium are determined by the mechanisms that occur at the pore scale and which, in a 

phenomenological approach, do not have to be specified. A solution to this problem was 

given by Spiegler and Kedem (1966), who introduced the so-called virtual variables. They 

imagined cutting the porous medium into a series of elements of length dx in the transport 

direction and interposing a virtual or equivalent bulk solution, which is in thermodynamic 

equilibrium with the adjacent element of the porous medium, between them (Fig. 3). In such a 

way, they were able to reproduce the same conditions of the system studied by Staverman for 

an infinitesimal element of the membrane, with the only difference being that the mass fluxes 

resulted to be linear functions not of the differences, but of the gradients of the electro-

chemical potentials of the virtual electrolyte solution components. Introducing such virtual 

solutions can seem to be a theoretical trick to avoid the evaluation of the partition effect, but it 

should be pointed out that this is the only correct way of proceeding with the thermodynamic 

approach because, in this context, it is not possible to specify any physical property of the 

porous medium, since the description of the system is purely phenomenological. The 

consistency of the approach is given by the fact that the virtual solutions coincide with the 



 

 

real ones at the boundaries of the porous medium: therefore, the problem formulated in terms 

of virtual variables can be coupled with suitable boundary conditions, expressed as functions 

of the liquid state variables in the external bulk solutions in contact with the porous medium. 

In the following, the ion concentration, hydraulic pressure and electric potential of the virtual 

electrolyte solutions are indicated as ci (molm
3

), u (Nm
2

) and  (V), respectively. To avoid 

confusion with the virtual variables, the real variable symbols are marked with a line 

),u,c( i  . 

The second problem that has to be addressed in order to extend Staverman’s approach to 

porous media is that of accounting for solid skeleton deformations. This problem is of central 

importance in the porous media theory, but is considered less in chemical literature. 

A first mechanical theory for porous media, whose pores are saturated by a liquid, was given 

by Biot (1941), under the assumption of infinitesimal strains of the solid skeleton. 

Successively, finite strains were included by Gibson et al. (1967), Raats and Klute (1968a, 

1968b), Smiles and Rosenthal (1968) and Biot (1972 and 1977), through the adoption of a 

Lagrangian coordinate system that moved with the solid skeleton. 

The porous media theory was derived using the formalism of the thermodynamics processes 

by Coussy (1995). De Boer (2000; 2005) and Ehlers (2002) adopted the mixture theory 

approach of Truesdell and Tupin (1960) and the exploitation of entropy inequality of 

Coleman and Noll (1963) in order to derive constitutive equations for mechanical behaviour. 

Recourse was also made to the mixture theory in Rajagopal and Tao (1995) in order to couple 

mechanical and hydraulic behaviour.  

Coupling of mechanical and chemical behaviour dates back to Sherwood (1993), Dormieux et 

al. (1995) and Heidug and Wong (1996). Sherwood (1993) and Heidug and Wong (1996) 

restricted their analysis to the case of solutions containing an uncharged solute, while 



 

 

Dormieux et al. (1995) considered only mechanical constitutive equations for clays in 

equilibrium with a solution containing a single salt in solution. 

The phenomenological approach is here developed with reference to a solution containing N 

ion species, and accounting for both mechanical and transport constitutive equations. The 

main simplifying assumptions adopted in the analysis are: 

1. unidimensional geometry (spatial coordinate, x), representing the reference problem of 

Fig. 1; 

2. infinitesimal strains of the solid skeleton; 

3. saturated porous medium (the voids are filled with an electrolyte solution); 

4. incompressible solid and liquid phase; 

5. infinitely diluted electrolyte solution; 

6. complete dissociation of the salts in the solution; 

7. absence of chemical reactions. 

A unidimensional geometry assumption means that the only nonzero fluxes (i.e. mass flux, 

momentum flux, energy flux, entropy flux.) exist in the x direction. As in the scheme of Fig. 

1, the soil is represented by a layer that can only undergo vertical strains, which are also 

volumetric strains. The vertical displacements are assumed to be sufficiently small in order to 

make the hypothesis of infinitesimal strains reasonable. 

Assumptions 1-4 are analogous to those adopted to derive Terzaghi’s consolidation equation, 

which is very familiar to geotechnical engineers. These assumptions have been proved to be 

acceptable for most applications that are encountered in geotechnical engineering. However, it 

should be stressed that in some cases they cannot be considered reasonable: for instance, in 

the case of very compressible clay soils, characterized by a water content close to the 

Atterberg liquid limit, the expected strains cannot be assumed infinitesimal and finite strains 



 

 

have to be accounted for; similarly, when clay soils undergo a desiccation process, the water 

saturation condition is generally not verified and air can enter the soil pores. 

Assumptions 5-7 are relative to the electrolyte solution that permeates the soil. The 

assumption of ideal, i.e. infinitely diluted, solution is generally considered acceptable when 

dealing with natural soil water or landfill leachate, due to the very low ion concentrations that 

are normally encountered (Bear, 1972; Freeze and Cherry, 1979). However, in some cases, 

relatively high ion concentrations can be found, as in the case of the proximity of sea water, 

therefore such an assumption cannot be adopted and corrective terms need to be introduced, 

as illustrated in Appendix B. In the present work, partial salt dissociation and chemical 

reactions are not taken into account, but they could be introduced in the analysis by 

considering the presence of neutral solutes and by adding a source/sink term to the mass 

balance equations. 

In the proposed approach, the transport constitutive equations are developed starting from the 

expression of the dissipation function, , whose derivation from the mass, momentum, 

energy and entropy balances is reported in Appendix A. The mechanical constitutive 

equations are restricted to the assumption of elastic behaviour of the solid skeleton, and are 

derived from the expression of the Legendre transform of the Helmholtz free energy of the 

solid skeleton, with reference to the initial or undeformed volume, 'sk

V . The derivation of the 

expression of 'sk

V  is reported in Appendix A. 

  



 

 

MASS BALANCES 

In the approach of classical thermodynamics of irreversible processes, the equations 

governing the transport of the fluid components through the porous media are the mass 

balances of these components. If the fluid moving through the porous medium is a diluted 

electrolyte solution, the mass balance equations for the unidimensional case, under the 

assumption of small strains of the porous medium, can be expressed as follows (Gibson et al., 

1967; Peters and Smith, 2002; Coussy, 2004): 
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where: 

N = number of ions contained in the pore solution (-); 

 = increment of fluid content (-); 

e = current void index, defined as the ratio between the void volume and the solid volume (-); 

e0 = void index corresponding to the initial or undeformed state (-). 

ic  = i-th ion concentration, referring to the pore solution (molm
3

); 

q = Darcy’s velocity or volumetric flux of the electrolyte solution relative to the solid 

skeleton, which is assumed approximately equal to the volumetric flux of water, due to the 

assumption of a diluted solution (ms
1

); 

iJ  = i-th ion molar flux (molm
2
s
1

) relative to the solid skeleton. 

The increment of fluid content, , for a saturated porous medium with incompressible 

constituents, can be related to the current void index, e, as follows: 
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The following relation between the increment of fluid content, , and the strain,  (-), exists: 

 

 dd                (3) 

 

where the compression strain has been assumed positive. 

The volumetric flux of the solution relative to the solid skeleton is defined as follows: 

 

)vv(nq skw                (4) 

 

where: 

n = soil porosity (-); 

vw = water velocity (ms
1

); 

vsk = solid skeleton velocity (ms
1

). 

The flux of i-th ion relative to the solid skeleton is defined as follows: 

 

)vv(cnJ skiii            for i = 1, 2, … , N          (5) 

 

where: 

vi = velocity of i-th ion (ms
1

). 



 

 

Given mass balances (1) and (2), the constitutive problem is that of finding suitable relations 

between , 
0

i

e1

ce




, q and Ji with the virtual variables ci, u and . 

  



 

 

TRANSPORT EQUATIONS 

For the fluxes q and Ji, reference is made to the expression of the dissipation function,  

(Js
1
m

3
), defined as the rate of entropy production multiplied by the absolute temperature, 

which is derived in Appendix A: 
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where: 





N

1i

icTR = osmotic pressure of the virtual solution (Nm
2

); 

R = universal gas constant (= 8.314 Jmol
1
K

1
); 

T = absolute pressure (K); 

w = water density (= 110
3
 kgm

3
); 

g = gravitational acceleration ( 9.81 ms
2

); 

 dFz)d(d iTi

ec

i  = differential of the electro-chemical potential of i-th ion (Jmol
1

); 

F = Faraday’s constant (= 96,485 Cmol
1

); 

zi = electro-chemical valence of the i-th ion (-); 

i

i

Ti dc
c

TR
)d(


  = differential of the chemical potential of i-th ion at constant temperature 

(Jmol
1

). 

When deriving Eq. 6, the x coordinate has been taken in the direction of gravity. 

The expression of the dissipation function  is generally interpreted by assuming that the 

terms in brackets represent the thermodynamic forces acting on the system, and producing the 



 

 

thermodynamics fluxes q and Ji. The constitutive assumption is that the fluxes depend on 

these thermodynamic forces, through the simplest acceptable relationship , i.e. the linear one: 
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where ab  represents the phenomenological coefficient that relates flux "a" to thermodynamic 

force "b". 

Using statistical mechanics methods, Onsager (1931a,b) was able to show that the matrix of 

phenomenological coefficients is symmetric, or that: 

 

baab    for  a, b = w, 1, 2, … , N  when ba  .          (8) 

 

The Onsager reciprocal relations given in Eqs. 8 were questioned by Truesdell (1984a,b), who 

criticized their theoretical derivation and application to diffusion, viscosity and heat transport 

problems. However, Dominijanni and Manassero (2010 and 2011) have shown that these 

relations can be verified for a physical model, derived from the assumption that the 

macroscopic chemical potentials of fluid components between the real and the virtual solution 

are equal. For this model, the symmetry of the matrix of phenomenological coefficients is a 

consequence of the hypothesis of infinite dilution of the electrolyte solution and the resulting 

binary drag between the mixture components. Within the scope of the phenomenological 

approach, it is also very important to point out that the Onsager relations were verified 

experimentally by Letey and Kemper (1969) on clay soils. Considering such experimental 



 

 

results, Eqs. 8 can be considered as a phenomenological assumption, sustained by 

experimental verification, and not as the result of a theorem. 

An alternative form of the phenomenological equations, which is particularly suitable for the 

experimental determination of phenomenological coefficients, is the following: 
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When the analysis is devoted to evaluating the migration of an electrolyte solution through a 

bentonite barrier, the condition in which no electrical current exists across the soil needs to be 

taken into account: 

 

0JzFI
N

1i

iie 







 



            (12) 

 

where Ie is the electric current density. 



 

 

This condition is usually relevant for engineered containment applications, in that most 

containment systems do not involve the application of an electrical current across the soil 

barrier (Malusis and Shackelford, 2002). The application of this equation, together with Eqs. 

7 or 9, allows the electric potential gradient to be eliminated from the transport equations, 

which result to only have the virtual hydraulic pressure, u, and the virtual ion concentrations, 

ci, as variables. 

The most relevant case of practical interest is when the pore solution contains a single salt:  
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consisting of a counter-ion (charge polarity opposite that of the solid skeleton charge) and a 

co-ion (same charge polarity as the solid skeleton); (1, z1) and (2, z2) are the stoichiometric 

coefficient and the electrochemical valence of the counter-ion (index 1) and the co-ion (index 

2), respectively. Montmorillonite particles have a negative net electric charge: as a result, the 

counter-ions are the cations (positive charged ion molecules) and the co-ions are the anions 

(negative charged ion molecules). 

The salt in solution is considered to be completely dissociated with the following 

stoichiometric reaction: 
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If c1 and c2 represent the concentration of the counter-ion and co-ion, respectively, the salt 

concentration, cs, can be defined as follows: 
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In this case, the dissipation function can be expressed as follows: 
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Using the electro-chemical potential and electric current definition, Eq. 13 can be expressed 

as follows: 
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Under the condition of no electric current (i.e. Ie = 0), the last term in Eq. 15 is dropped, and 

the ionic fluxes are related as follows: 
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where: 

Js = mass flux of the salt (molm
2
s
1

). 

Then, using the following definition of the chemical potential gradient of the salt: 
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and observing that 
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the dissipation function can be written in the following form: 
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where 

ss

d

s qcJJ  = salt mass flux relative to the solvent (molm
2
s
1

). 

On the basis of such an expression of the dissipation function, the phenomenological 

equations can be formulated as follows: 
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or in the following alternative way, which is more suitable for an experimental determination 

of phenomenological coefficients: 
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where: 
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 = reflection coefficient or chemico-osmotic efficiency coefficient, which is also 

frequently indicated with the symbol  in biological and chemical literature (-); 
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It should be pointed out that the denomination of "chemico-osmotic efficiency coefficient" for 

the parameter  can generate confusion, since such a parameter is not always expected to be 

between 0 and 1. For instance, Kemper and Quirk (1972) measured negative values of  on 

clay samples. The thermodynamic condition 0  expressed by Eq. 19 implies the following 

restrictions on the phenomenological coefficients: 
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while coefficient  can assume any value. For this reason, the denomination of "reflection 

coefficient" for  is preferred to that of "chemico-osmotic efficiency coefficient". 

The coefficient ww can be measured, under steady state conditions, using traditional 

permeameters. Malusis et al. (2001) developed a new testing apparatus to determine  and Ps. 

This apparatus is able to impose the condition of no-volumetric flux (q = 0) through a soil 



 

 

sample in contact with two external solutions, maintained at constant salt concentrations, so 

that the global or averaged values of the coefficients can be measured. The global values of  

and Ps are defined as follows (Auclair et al., 2002): 
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where cs' and cs'' represent the salt concentration at the boundaries of the clay sample and 

''c'cc sss   is their difference. These coefficients can be determined by means of the 

following relations under steady state conditions: 
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where ''u'uu   and '''   represent the difference between the hydraulic pressure 

and the osmotic pressure at the boundaries of the clay sample, respectively, and L (m) is the 

length of the sample. 

At this point, a comparison with the more common transport equations of the advective-

diffusive transport theory can be useful. The volumetric flux q is usually evaluated through 

the Darcy equation (Bear, 1972; Freeze and Cherry, 1979): 
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where: 

k = hydraulic conductivity (ms
1

). 

The solute transport is usually governed by the advective-diffusive equation (Shackelford, 

1993): 
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where: 

0,sm

*

s DD   = effective diffusion coefficient of the salt (m
2
s
1

); 

m = non-dimensional matrix tortuosity factor (<1); 

Ds,0 = free-solution diffusion coefficient of the salt. 

The coefficient m accounts for the tortuous nature of the actual diffusive pathways through 

the porous medium due to the geometry of the interconnected pores. The free-solution 

diffusion coefficient of the salt, Ds,0, is given by (Robinson and Stokes, 1959; Shackelford, 

1989): 
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where D1,0 and D2,0 are the free-solution diffusion coefficients of the counter-ion and of the 

co-ion, respectively. 



 

 

A comparison of Eqs. 25 with Eqs. 20 and 21 shows that there is a correspondence when sw 

= ws = 0 (or  = 0). In this particular case, the following correspondence between the 

phenomenological parameters and the more common transport coefficients can be found: 
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It is relevant to point out that Eqs. 27 only refer to the particular case for which sw = ws = 0 

(or  = 0). In this case, the transport Eqs. 21 are not coupled and the classical advective-

diffusive transport theory is restored. 

Eq. 27b has in particular generated some confusion, since it has been assumed to also be valid 

when sw = ws  0 (or   0) (Yeung and Mitchell, 1993; Mitchell, 1993) and has been 

considered as an identification of the physical meaning of ss. In reality, the physical 

identification of ss needs an adequate physical model that accounts for the interaction 

between montmorillonite lamellae and the ions in a pore solution and, when sw = ws  0 (or 

  0), the relation with the effective diffusion coefficient of the salt is not so straightforward. 

When sw = ws  0 (or   0), the porous medium is said to be semipermeable or 

permiselective, due to the fact that the transport resistance exerted by the medium differs for 

the components of the liquid phase. 

A special condition that can be reached by a semipermeable porous medium is that in which 

the salt flux is completely hindered, i.e. Js = 0. Looking at Eq. 21b, this condition is met when 

 = 1 and Ps = 0. In this special case, the semi-permeable porous medium is said to be "ideal" 



 

 

or "perfect", because it is able to completely hinder the passage of the salt, and act as a 

perfectly efficient barrier. 

Based on such considerations, it can be concluded that the coupled flux theory based on the 

phenomenological approach of the thermodynamics of irreversible processes includes the 

more common advective-diffusive transport theory as a particular case. 

  



 

 

PORO-ELASTIC CONSTITUTIVE EQUATIONS 

If elastic behaviour is assumed for the porous medium, the constitutive equation of  and 

)e1/()ce( 0i   can be inferred from the expression of function 'sk

V , which represents the 

Legendre transform of the Helmholtz free energy of the solid skeleton, referring to the initial 

or undeformed volume, and whose derivation, under the assumption of infinitesimal strains, is 

reported in Appendix A: 
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The function 'sk

V  can be considered to depend on the variables  )u(   and Ti )( , 

therefore the simplest constitutive equations that can be inferred are: 
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At this point, it could be useful to point out that, in the absence of a partition effect for the 

solute in the porous medium, i.e. when ii cc  , the expression of 'sk

V , using the following 

identity 



N

1i

Tii )d(cd , is reduced to the following expression (see Appendix A): 
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Such an expression of 'sk

V  can be considered as a theoretical justification for the Terzaghi’s 

effective stress definition dud'd  , and the use of an elastic relationship of the type: 

 

'dd  .             (31) 

 

It should be stressed that the classical results of soil mechanics are restored when there is no 

ion partition effect. 

A case of practical interest is that in which a single salt, assumed completely dissociated, is 

present in the pore solution. In such a case, Eq. 28 can be written as follows: 
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Such an expression of 'sk

V  suggests the following constitutive equations: 
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Symmetry of the coefficients, i.e. svvs  , can be demonstrated by considering 'sk

V  as a 

continuous function of the variables  )u(   and Ts )( . Therefore, 
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The mixed partial derivatives 
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which, for Eqs. 33, implies svvs  . 

In conclusion, it is of interest to observe that constitutive Eq. 33a can be compared with the 

equation proposed on an empirical basis by Barbour and Fredlund (1989) and which has been 

used by various authors (e.g. Kaczmarek and Hueckel, 1998 and Peters and Smith, 2004): 
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where mv and m are phenomenological parameters. 

Correspondence between Eq. 33a and Eq. 36 can be obtained taking 
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Another comparison of interest is that of the constitutive equations proposed by Dormieux et 

al. (1995) and, successively developed by Dormieux et al. (2003) and Coussy (2004). With 

reference to Coussy (2004) and using the notation of this paper, the constitutive equations for 

a swelling clay soil, in equilibrium with a solution containing a single salt assumed 

completely dissociated, can be expressed as follows: 
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where 

K = skeleton bulk modulus; 

b = Biot’s coefficient; 

A = chemical activity of the salt in solution; 

N = poro-elastic coefficient of the salt. 

The activity coefficient accounts for the salt partition effect in the porous medium and is 

defined as follows: 

 

21

21s

cc

)(c
A




 .            (39) 

 

It is necessary to point out that, using such a definition of A, the partition effect is governed 

by the cation attraction, therefore smaller values of A than 1 are expected in the presence of a 

partition effect, while A = 1 is the condition that corresponds to the absence of a partition 

effect within the porous medium. 



 

 

In order to compare the Coussy (2004) constitutive equations with those proposed in this 

paper, the following identity can be useful: 
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Using such an identity, the Coussy (2004) constitutive equations can be written as follows: 
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In order to recast Eqs.33 in the same form as the Coussy (2004) constitutive equations, it is 

sufficient to derive  )ddu(d   from Eq.33a and to substitute the obtained relation in 

Eq.33b, divided by cs, so that: 
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Comparing Eqs. 41 and Eqs. 42, the following relations can be found between the 

phenomenological parameters of this paper and those of Coussy (2004): 
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It is interesting to note that Eq. 33a can also be expressed in the following form: 
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where M =1/vv = K is the unidimensional elastic modulus of the porous medium (in 

geotechnical literature, the symbol M is used more frequently than Coussy’s symbol K) and 

dusw represents the swelling pressure, which is given by: 
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  is the swelling coefficient. 

From experimental observations, it is known that the swelling pressure tends to zero when 

sc , therefore usw can be obtained as follows: 
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Eq. 44 represents a relevant theoretical result, since it allows the effective stress principle to 

be reformulated and extended to charged soils. The effective stresses, in fact, can be identified 

with the term on the left hand side of Eq. 44, i.e. 

 

swdudud'd              (47) 

 

Terzaghi’s definition of effective stress, as already stated, corresponds to the particular case 

for which dusw = 0, i.e. vs = 0. Therzaghi’s poro-elastic theory for non-swelling soils is 

therefore restored as a special case of the more general theory developed for swelling clays. 

 

  



 

 

CONCLUSIONS 

The final set of equations governing the consolidation and transport problem of a clay barrier 

can be formulated by inserting the mechanical and transport constitutive equations (i.e. Eqs. 7 

and 29) into the mass balances (Eqs. 1). Assuming that the total stress is maintained constant 

in time, i.e. 0t/  , the resulting set of equations is given by: 
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Eqs. 48 are a set of N+1 equations for the N+2 variables ci, u and . The gradient of the 

electric potential  can be eliminated from Eqs. 48, using the condition of nil electric current, 

i.e. 0JzFI
N

1i

iie  


, and reducing the number of variables to N. If the condition of 

electroneutrality of the virtual solution, i.e. 0cz
N

1i

ii 


, is accounted for, one variable can be 

eliminated, and the number of equations is thus reduced from N+1 to N. 

The resulting set of equations can be solved together with the boundary conditions, expressed 

as function of ci and u and of their time and space first derivatives. 

The phenomenological approach, using the formalism of the thermodynamics of irreversible 

processes, allows a consistent formulation to be made of the consolidation and transport 

problem that accounts for swelling and osmotic effects. This result is obtained without any 

specification of the physical and chemical phenomena that occur at the pore scale and 

determine such effects at the macroscopic scale of observation. Thermodynamics 



 

 

considerations define the number of phenomenological coefficients necessary for the analysis 

and restrict the values that they can assume. However, on the basis of the phenomenological 

approach, all the coefficients should be measured through macroscopic experimental tests. 

The resulting number of tests necessary for the characterization of a single clay is extremely 

high, considering that all the coefficient are unknown functions of the state variables ci and u. 

From a practical point of view, it could be unfeasible to carry out such a high number of tests. 

For this reason, the phenomenological approach should be opportunely combined with a 

physical one, which, starting from the identification of the interactions that take place at the 

pore scale between the montmorillonite lamellae and the liquid phase, allows the 

phenomenological coefficient to be related to a limited number of physical and chemical 

properties of the clay soil. In this way, a restricted number of tests needs to be carried out in 

order to obtain necessary data for the evaluation of the behaviour of clay in field applications. 

  



 

 

APPENDIX A 

A derivation of Eqs. 1, 6 and 28 of the main text is reported in this Appendix. Such a 

derivation is based on the formalism of the thermodynamics of irreversible processes, which 

has been developed in more detail in De Groot and Mazur (1962), Katchalsky and Curran 

(1965), Haase (1990), Coussy (1995 and 2004) and Revil (2007). 

 

Mass balance equations 

The mass balance equations for all the components of the system, i.e. the solid skeleton (index 

sk), water (index w) and ion species (index i = 1, 2, … , N), need to be considered. 

In the absence of chemical reactions, the generic mass balance for the r-th component of the 

porous medium (r = sk, w, 1, 2, … , N), which is assumed completely saturated by the liquid 

phase, can be expressed as: 
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where rc  represents the molar concentration relative to the pore volume. 

For the water component, the following relationship holds: 
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where w and Mw are the water density and molar mass, respectively. 

For the electric charges of the solid skeleton, the molar concentration per unit volume of pore 

volume can be expressed as follows: 
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where 0,skc  represents the solid molar mass per unit volume of the solid phase. 

Using the relationships A2 and A3 and assuming that w and 0,skc  are constant, the mass 

balances for the porous medium can be expressed in terms of spatial coordinates as follows: 
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where: 

vw = water velocity (ms
1

); 

vsk = solid skeleton velocity (ms
1

); 

iii vcnI  = absolute flux of the i-th ion (molm
2
s
1

); 

vi = velocity of the i-th ion (ms
1

). 

 

The mass balances given by Eqs. A4 can also be expressed in terms of material coordinates, 

assuming that the coordinate system deforms with the solid skeleton. 

The relationship between the spatial and material coordinates is given by (Peters and Smith, 

2002): 

 

),a(),a(x            (A5a) 



 

 

),a(t            (A5b) 

 

where x and t are the spatial and temporal coordinates in the spatial coordinate system; a and  

are the spatial and temporal coordinates in the material coordinate system;  is an unknown 

function that describes the relationship between x and the material coordinates a and . 

The chain rule of differentiation can be used to derive the transformation rules between the 

spatial and material coordinate systems: 
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Using material coordinates, the mass balances can be written as follows (Peters and Smith, 

2002): 

 

water:   
a

q

e1

e

0 















       (A7a) 

ions:   
a

J
c

e1

e i
i

0 

















       (A7b) 

solid skeleton  0
e1

e1
)n1(

0


















      (A7c) 

 

where )vv(nq skw   and )vv(cnJ skiii  . 



 

 

If the hypothesis of infinitesimal strains is assumed, the following approximations can be 

adopted (Peters and Smith, 2002): 
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Using approximate relationships A8, mass balances A7a and A7b give mass balances Eqs. 1 

of the main text, taking into account that Biot’s increment of fluid content  is related to the 

void index e by the following identity: 
0e1

de
d


 . 

 

Momentum balance equations of the mixture 

Neglecting the inertial effects, the momentum balance of the whole mixture, including the 

solid skeleton (index sk), water (index w) and ion species (index i = 1, 2, … , N), is given by: 
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where: 

Fr = external force per unit volume  acting on the components of the system (Nm
3

). 

Taking into account the gravitational and electric fields, the following identification of the 

external forces is obtained: 
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where: 

sk is the solid skeleton density (kgm
3

) and zsk is the electro-chemical valence of the solid 

skeleton (which, for bentonite, is expected to be zsk = 1). 

Considering the electroneutrality condition in the porous medium, and assuming a negative 

charge for the solid skeleton: 
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Eq. A9 can be expressed as follows: 
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where: 

wsk n)n1(  = total density of the porous medium (kgm
3

). 

 

Thermodynamic potentials 

In order to derive the energy conservation and entropy balance equations for a porous medium 

whose voids are filled by an electrolyte solution, some fundamental thermodynamics 

relations, relative to liquid mixtures, need to be taken into account. 



 

 

The specific internal energy, f

VU , of the pore solution can be expressed as the sum of the 

products of the partial molar internal energy times the molar concentration of the solution 

components: 
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where: 

f

VU  = specific internal energy of the pore solution (internal energy per unit volume); 

kU  = partial molar internal energy of the k-th pore solution component; 

n = porosity; 

ck = molar concentration of the k-th pore solution component. 

The first law of thermodynamics states that the variation in the internal energy of a material 

system is the sum of the mechanical work performed by the external forces on the system and 

the external heat supply (Coussy, 2004). The first law applied to the components of a liquid 

mixture that fills the voids of a porous medium can be expressed as follows: 
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where −ukd(1/ck) represents the infinitesimal mechanical work supplied to the liquid 

component by the partial pressure uk in the infinitesimal volume change d(1/ck) of its specific 

material volume 1/ck, while dQk is the infinitesimal heat supply. 

Similarly to what was done for the internal energy, we can introduce the partial molar 

entropy, Sk, defined as follows: 
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where: 

f

VS  = specific entropy of the pore solution (entropy per unit volume); 

kS  = partial molar entropy of the k-th pore solution component. 

The second law of thermostatics applied to the fluid-specific material volume 1/ck can be 

expressed in the form: 
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where T is the absolute temperature. 

Eliminating the infinitesimal heat supply, (A14) and (A16) combine to give the following 

energy balance (Coussy, 2004): 
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Equation A17 holds for any infinitely slow evolution of the liquid from one of its 

homogeneous equilibrium states to another: as a consequence, 1/ck and kS  constitute a 

complete set of independent thermodynamic state variables, so that: 
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The partial pressure uk and the absolute temperature can therefore be expressed as derivatives 

of the partial internal energy with respect to 1/ck and kS , respectively: 
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Equations A19a,b are the liquid state equations where the internal energy Uk acts as a 

potential which links the set of thermodynamic state variables (1/ck, kS ) to the conjugate set 

(−uk, T) (Coussy, 2004). 

Another thermodynamic potential of interest for the next theoretical derivations is the partial 

molar specific enthalpy, which is defined as follows: 
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The specific Helmholtz free energy, Fk, of the k-th liquid component can be defined as 

follows: 
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The last thermodynamic potential of interest is the chemical potential, k , which is defined as 

follows: 
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The following expression can be derived from Eq. A22 for the infinitesimal increment in 

chemical potential dk (Truesdell, 1962): 
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Using Eq. A17, Eq. A23 reduces to: 
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where 

Tkkk )d(c/du   = chemical potential increment at constant temperature. 

The following expression for the increment in the Helmholtz specific free energy can be 

found from Eqs. A22 and A24: 
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At this point, we need to find a suitable state equation for partial pressure uk, i.e. a 

relationship with the pore solution component concentrations and the absolute temperature. In 

order to reach this goal, we can point out that the solute molecules can be assimilated to the 

particles of an ideal gas under thermal motion (Einstein, 1956; Fermi, 1937). van’t Hoff 



 

 

(1887) first recognized that whenever a solute movement is blocked by a wall, the solute 

transfers momentum to the wall and therefore generates pressure on it, in analogy with the 

particles of an ideal gas. The van’t Hoff equation is nothing more than the law of perfect gas 

applied to solute molecules: 
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where R is the universal gas constant (8.314 Jmol
1
K

1
). 

Considering the additive property of partial pressure, i.e. 
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where u is the liquid pore pressure, the solvent (water) partial pressure uw can be derived as 

follows: 
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The sum of the solute partial pressures is called the osmotic pressure of the solution and is 

indicated withy the symbol : 
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The chemical potential increment, at constant temperature, can therefore be expressed, for 

water and solute (ion) components, respectively, as follows: 
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Energy balance equation of the mixture 

If the kinetic effects are neglected, the energy balance equation of the whole system is given 

by (Haase, 1990; Heidug and Wong, 1996; Coussy, 2004): 
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where 

UV = internal energy per unit volume (Jm
3

); 

vsk = velocity of the solid skeleton (ms
1

); 

JQ = heat current density (Jm
2
s
1

); 

)vv(cnJ skkkk   = relative molar mass flux of the k-the component of the fluid phase with 

respect to the solid skeleton (molm
2
s
1

) 

Hk = partial molar enthalpy of k-th component of the fluid phase (Jmol
1

); 

vr = velocity of the r-th component of the system (ms
1

). 

Using Eq. A9, the energy balance (A31) can be rewritten as follows: 
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Entropy balance of the whole mixture 

The entropy balance can be expressed as follows (Haase, 1990; Heidug and Wong, 1996; 

Coussy, 2004): 
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Then, introducing the Helmholtz free energy of the whole mixture per unit volume, FV: 

VVV STUF            (A34) 

 

and using the energy balance, Eq. A32, the following inequality is obtained: 
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Considering Eq. A22, inequality Eq. A35 can be expressed as follows:  
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Inequality Eq. A36 is a generalization to a pore solution containing N ion species of the 

inequality obtained by Coussy (1995) for a porous medium saturated by a mono-component 

liquid. According to Coussy (1995 and 2004), three distinct sources of dissipation can be 

identified: 
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where 

s represents the solid skeleton dissipation, f accounts for the fluid dissipation and th is 

related to the dissipation due to heat conduction. 

If the solid skeleton is assumed to behave as an elastic body, 0s   and inequality Eq. A36 

reduces to: 
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where  represents the total dissipation. The chemical potential gradient at constant 

temperature, as defined in Eq. A24, has been introduced into Eq. A38. 

For isothermal systems  0dT  , the dissipation function  can be expressed as follows: 
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Using Eqs. A2, A10 and A30a, the dissipation function  can be expressed as in Eq. 6 of the 

main text: 
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where: 

 dFz)d(d iTi

ec

i  = differential of the electro-chemical potential of the i-th ion. 

The dissipation term s is null for an elastic solid skeleton and the following balance of the 

Helmholtz free energy can be derived from Eq. A37a: 
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Introducing the material derivative: 
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the Helmholtz free energy balance can be written as follows: 
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It is convenient to work with the so-called energy function V, which is defined as follows 
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which represents the Helmholtz free energy of the mixture per unit initial volume. 

Observing that 
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the material derivative of V results to be given by: 
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Introducing the energy function V into the Helmholtz free energy balance, Eq. A43, it is 

possible to derive the following equation: 
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or, using Eq. A6 
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where  represents the entropy of the mixture per unit initial volume. 

If, at this point, the assumption of small strains is introduced, the following approximations 

hold: 
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For infinitesimal strains, we can write the following expression for the energy function 

increment dV: 
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According to Coussy (1995 and 2004) and Dormieux et al. (2003), the Helmholtz free energy 

of the solid skeleton relative to the initial or undeformed volume, sk

V , can be derived by 

subtracting, from the free energy of mixture V , the free energy of the real fluid phase f

V , 

which is defined as follow: 
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Therefore, sk

V  results given by: 
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Using Eqs. A22, A24, A25 and A50, the infinitesimal increment sk

Vd  is given by: 
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where fsk   is the entropy per unit initial volume of the solid skeleton, which is 

obtained as the difference between the entropy of the mixture, , and the entropy of the fluid 

phase 

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e
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Eq. A53 can be re-written by separating the water and ion contributions and observing that 

ww cc  , due to the fact that water is constituted by uncharged molecules and, for this reason, 

does not undergo a partition effect, therefore 
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Using Eq. 2, 3 and A28, sk

Vd  can be expressed as follows: 
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where u is the hydraulic pressure of the fluid phase and 



N

1i

i

N

1i

i cRTu  is the osmotic 

pressure of the virtual solution. 

In the absence of a partition effect, also for the ions, i.e. ii cc  , Eq. A55 reduces to the 

classical form obtained by Coussy (1995): 
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where )u('   represents the effective stress. 

Poro-elastic constitutive equations, can be derived, under isothermal conditions (i.e. dT = 0), 

from Eq. A55, considering sk

V  as a function of  and )c/ce( ii . As an alternative, it can be 

convenient to work with the Legendre transform of sk

V , which is defined as follows: 
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Using Eq. A55, the differential of 'sk

V , for isothermal systems, is given by: 
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Using Eq. A24 with dT = 0, the expression of 'd sk

V  can be formulated as follows: 
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and the equation that has been introduced into the main text as Eq. 28 for the derivation of the 

poro-elastic constitutive equations is obtained. 

  



 

 

APPENDIX B 

The assumption of ideal, i.e. infinitely diluted, solution is generally acceptable when dealing 

with natural soil water or landfill leachate. However, in some cases, relatively high ion 

concentrations can be encountered, as in the case of the proximity of sea water, therefore such 

an assumption cannot be adopted and corrective terms need to be introduced into the 

theoretical approach described in the paper. 

In the case of high ion concentrations, the ion chemical potential increment at constant 

temperature can be expressed as follows (Helfferich, 1962; Katchalsky and Curran, 1965; 

Samson et al., 1999): 
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where: 

i = activity coefficient (-), by which ci is multiplied to give the “active concentration” or 

activity, ai: 
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The osmotic pressure increment, d, results to be related to the ion concentration increments 

as follows: 
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The activity coefficient, i, is an experimentally determinable function of the concentration of 

all the ions contained in the aqueous solution. 

In the case of only one salt being present in the aqueous solution, the ion activity coefficients 

can be related to only the salt concentration cs, since the ion concentrations are linked to each 

other through the electroneutrality condition, 
2

i i
i 1

z c 0


 . The salt chemical potential 

increment at constant temperature, given by Eq. 17, can therefore be related to the salt 

concentration as follows: 
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Eq. B1 can be used to relate the chemical potential at constant temperature to the ion 

concentration in substitution of Eq. A30b, when the concentration is too high to make the 

assumption of ideal solution acceptable. Similarly, taking into account Eq. B3, the solute 

permeability, Ps, results to be related to the phenomenological coefficients ss, sw, ww 

through the following expression: 
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Figure 1. Reference problem representing a horizontal clay barrier separating two electrolyte 

solutions containing different ion concentrations. Symbols: ciT = concentration of the i-th ion 

in the solution at the top of the liner; ciB = concentration of the i-th ion in the solution at the 

bottom of the liner; h = difference in the hydraulic head between the top and bottom 

electrolyte solutions; x = spatial coordinate. 
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Figure 2. Conceptual scheme of the Staverman (1952) model. Subscript A and B refer to the 

electrolyte solution reservoirs on the left and on the right of the thermodynamic discontinuity, 

that represents the membrane. Symbols: ci = ion concentration of the i-th ion; u = hydraulic 

pressure;  = electric potential; T = absolute temperature. 
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Figure 3. Conceptual scheme of the Spiegler and Kedem (1966) model. Subscript A and B 

refer to the electrolyte solution reservoirs on the left and on the right of the thermodynamic 

discontinuity, that represents the membrane. Symbols: ci = ion concentration of the i-th ion; u 

= hydraulic pressure;  = electric potential; T = absolute temperature. 
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