113 research outputs found
Connections and dynamical trajectories in generalised Newton-Cartan gravity I. An intrinsic view
The "metric" structure of nonrelativistic spacetimes consists of a one-form
(the absolute clock) whose kernel is endowed with a positive-definite metric.
Contrarily to the relativistic case, the metric structure and the torsion do
not determine a unique Galilean (i.e. compatible) connection. This subtlety is
intimately related to the fact that the timelike part of the torsion is
proportional to the exterior derivative of the absolute clock. When the latter
is not closed, torsionfreeness and metric-compatibility are thus mutually
exclusive. We will explore generalisations of Galilean connections along the
two corresponding alternative roads in a series of papers. In the present one,
we focus on compatible connections and investigate the equivalence problem
(i.e. the search for the necessary data allowing to uniquely determine
connections) in the torsionfree and torsional cases. More precisely, we
characterise the affine structure of the spaces of such connections and display
the associated model vector spaces. In contrast with the relativistic case, the
metric structure does not single out a privileged origin for the space of
metric-compatible connections. In our construction, the role of the Levi-Civita
connection is played by a whole class of privileged origins, the so-called
torsional Newton-Cartan (TNC) geometries recently investigated in the
literature. Finally, we discuss a generalisation of Newtonian connections to
the torsional case.Comment: 79 pages, 7 figures; v2: added material on affine structure of
connection space, former Section 4 postponed to 3rd paper of the serie
A Potential Foundation for Emergent Space-Time
We present a novel derivation of both the Minkowski metric and Lorentz
transformations from the consistent quantification of a causally ordered set of
events with respect to an embedded observer. Unlike past derivations, which
have relied on assumptions such as the existence of a 4-dimensional manifold,
symmetries of space-time, or the constant speed of light, we demonstrate that
these now familiar mathematics can be derived as the unique means to
consistently quantify a network of events. This suggests that space-time need
not be physical, but instead the mathematics of space and time emerges as the
unique way in which an observer can consistently quantify events and their
relationships to one another. The result is a potential foundation for emergent
space-time.Comment: The paper was originally titled "The Physics of Events: A Potential
Foundation for Emergent Space-Time". We changed the title (and abstract) to
be more direct when the paper was accepted for publication at the Journal of
Mathematical Physics. 24 pages, 15 figure
Challenges in the development of a reliable cw-LIDT measurement routine
The characterization of continuous-wave (cw) laser-induced damage threshold (LIDT) requires a suitable measurement routine to obtain reliable results. In this study, we show that the existing measurement protocols are of limited use for cw-LIDT measurements. On the basis of testing several mirrors with varied distance and number of spots on the samples an adapted protocol for the damage behavior under cw laser irradiation is proposed. We observed a significant effect governed by debris and induced stress of induced damages on the damage behavior of subsequent irradiation spots. Finally, we performed a parametric study on the optical properties of mirror designs consisting of a metal and a dielectric multilayer film and demonstrated the LIDT dependence on the thermal conductivity of the substrate and the absorption of the components
Dual Axis Solar Tracker With Automated Cleaning System
Photovoltaic panels are fundamental in the generation of renewable energy both on a local scale and a utility scale. The mounting systems for such panels can be costly, require large amounts of maintenance, and miss out on energy savings. Manual cleaning and single axis tracking systems leave more to be desired from such systems. In this paper, we propose, research, test and manufacture a two axes solar tracking system with integrated water cleaning to obtain the most energy savings possible from a single PV panel. Our work shows that two axis tracking combined with an automated cleaning system can provide more energy savings compared to a fixed panel system requiring manual cleaning. We have shown technical feasibility of a two axis tracking system as well as demonstrated simple design, testing, and construction of a water based cleaning system using a small water pump and PVC piping. As a result of such manufacturing and in order to improve efficiency, it is our future recommendation to integrate water and electrical home connections, create a customer experience mobile or web based application, and complete large scale long term testing
Thermo-Elastic Topology Optimization For High Temperatures Gradients Using Load Separation
Designing components for thermo-mechanical loads is a challenging process. While mechanical loads like forces or pressure demand a stiff and thick-walled design, thermal loads create temperature gradients, resulting in thermo-mechanical stress from the structure's temperature proportional and, therefore, uneven expansion. In contrast to a pure mechanical load case, an initial design before optimization can already include stress levels beyond the limit of the material. Therefore, common optimization approaches for a preliminary design use exemplary systems with low-temperature gradients, so thermal stresses do not exceed the limit. From there, energy density is used to calculate the topology optimizations sensitivity and therefore decide which elements to remove and which to keep. This paper describes a novel approach for reducing thermo-mechanical stress by following the stress corresponding temperature gradients from the heat source to the sink to calculate a new sensitivity that helps to grow cooling channels. The optimization is exemplarily shown on a piston for internal combustion engines. While handling delta temperatures of 600K, results show a reduction in thermo-mechanical stress while reducing the component's mass. Because the approach reduces critical stress in a component, it allows the initial design (before the topology optimization) to have stress levels way above yield strength
Overcoming High Energy Backgrounds at Pulsed Spallation Sources
Instrument backgrounds at neutron scattering facilities directly affect the
quality and the efficiency of the scientific measurements that users perform.
Part of the background at pulsed spallation neutron sources is caused by, and
time-correlated with, the emission of high energy particles when the proton
beam strikes the spallation target. This prompt pulse ultimately produces a
signal, which can be highly problematic for a subset of instruments and
measurements due to the time-correlated properties, and different to that from
reactor sources. Measurements of this background have been made at both SNS
(ORNL, Oak Ridge, TN, USA) and SINQ (PSI, Villigen, Switzerland). The
background levels were generally found to be low compared to natural
background. However, very low intensities of high-energy particles have been
found to be detrimental to instrument performance in some conditions. Given
that instrument performance is typically characterised by S/N, improvements in
backgrounds can both improve instrument performance whilst at the same time
delivering significant cost savings. A systematic holistic approach is
suggested in this contribution to increase the effectiveness of this.
Instrument performance should subsequently benefit.Comment: 12 pages, 8 figures. Proceedings of ICANS XXI (International
Collaboration on Advanced Neutron Sources), Mito, Japan. 201
Comparison of Outcomes of antibiotic Drugs and Appendectomy (CODA) trial: a protocol for the pragmatic randomised study of appendicitis treatment.
INTRODUCTION: Several European studies suggest that some patients with appendicitis can be treated safely with antibiotics. A portion of patients eventually undergo appendectomy within a year, with 10%-15% failing to respond in the initial period and a similar additional proportion with suspected recurrent episodes requiring appendectomy. Nearly all patients with appendicitis in the USA are still treated with surgery. A rigorous comparative effectiveness trial in the USA that is sufficiently large and pragmatic to incorporate usual variations in care and measures the patient experience is needed to determine whether antibiotics are as good as appendectomy.
OBJECTIVES: The Comparing Outcomes of Antibiotic Drugs and Appendectomy (CODA) trial for acute appendicitis aims to determine whether the antibiotic treatment strategy is non-inferior to appendectomy.
METHODS/ANALYSIS: CODA is a randomised, pragmatic non-inferiority trial that aims to recruit 1552 English-speaking and Spanish-speaking adults with imaging-confirmed appendicitis. Participants are randomised to appendectomy or 10 days of antibiotics (including an option for complete outpatient therapy). A total of 500 patients who decline randomisation but consent to follow-up will be included in a parallel observational cohort. The primary analytic outcome is quality of life (measured by the EuroQol five dimension index) at 4 weeks. Clinical adverse events, rate of eventual appendectomy, decisional regret, return to work/school, work productivity and healthcare utilisation will be compared. Planned exploratory analyses will identify subpopulations that may have a differential risk of eventual appendectomy in the antibiotic treatment arm.
ETHICS AND DISSEMINATION: This trial was approved by the University of Washington\u27s Human Subjects Division. Results from this trial will be presented in international conferences and published in peer-reviewed journals.
TRIAL REGISTRATION NUMBER: NCT02800785
Cytomegalovirus distribution and evolution in hominines
Herpesviruses are thought to have evolved in very close association with their hosts. This is notably the case for cytomegaloviruses (CMVs; genus Cytomegalovirus) infecting primates, which exhibit a strong signal of co-divergence with their hosts. Some herpesviruses are however known to have crossed species barriers. Based on a limited sampling of CMV diversity in the hominine (African great ape and human) lineage, we hypothesized that chimpanzees and gorillas might have mutually exchanged CMVs in the past. Here, we performed a comprehensive molecular screening of all 9 African great ape species/subspecies, using 675 fecal samples collected from wild animals. We identified CMVs in eight species/subspecies, notably generating the first CMV sequences from bonobos. We used this extended dataset to test competing hypotheses with various degrees of co-divergence/number of host switches while simultaneously estimating the dates of these events in a Bayesian framework. The model best supported by the data involved the transmission of a gorilla CMV to the panine (chimpanzee and bonobo) lineage and the transmission of a panine CMV to the gorilla lineage prior to the divergence of chimpanzees and bonobos, more than 800,000 years ago. Panine CMVs then co-diverged with their hosts. These results add to a growing body of evidence suggesting that viruses with a double-stranded DNA genome (including other herpesviruses, adenoviruses, and papillomaviruses) often jumped between hominine lineages over the last few million years.Peer Reviewe
Phosphorylation of AMPA Receptors Is Required for Sensory Deprivation-Induced Homeostatic Synaptic Plasticity
Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca2+-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity
Variation analysis and gene annotation of eight MHC haplotypes: The MHC Haplotype Project
The human major histocompatibility complex (MHC) is contained within about 4Â Mb on the short arm of chromosome 6 and is recognised as the most variable region in the human genome. The primary aim of the MHC Haplotype Project was to provide a comprehensively annotated reference sequence of a single, human leukocyte antigen-homozygous MHC haplotype and to use it as a basis against which variations could be assessed from seven other similarly homozygous cell lines, representative of the most common MHC haplotypes in the European population. Comparison of the haplotype sequences, including four haplotypes not previously analysed, resulted in the identification of >44,000 variations, both substitutions and indels (insertions and deletions), which have been submitted to the dbSNP database. The gene annotation uncovered haplotype-specific differences and confirmed the presence of more than 300 loci, including over 160 protein-coding genes. Combined analysis of the variation and annotation datasets revealed 122 gene loci with coding substitutions of which 97 were non-synonymous. The haplotype (A3-B7-DR15; PGF cell line) designated as the new MHC reference sequence, has been incorporated into the human genome assembly (NCBI35 and subsequent builds), and constitutes the largest single-haplotype sequence of the human genome to date. The extensive variation and annotation data derived from the analysis of seven further haplotypes have been made publicly available and provide a framework and resource for future association studies of all MHC-associated diseases and transplant medicine
- …