29 research outputs found

    Conservation implications of the mating system of the Pampa Hermosa landrace of peach palm analyzed with microsatellite markers

    Get PDF
    Peach palm (Bactris gasipaes) is cultivated by many indigenous and traditional communities from Amazonia to Central America for its edible fruits, and is currently important for its heart-of-palm. The objective of this study was to investigate the mating system of peach palm, as this is important for conservation and breeding. Eight microsatellite loci were used to genotype 24 open-pollinated progenies from three populations of the Pampa Hermosa landrace maintained in a progeny trial for genetic improvement. Both the multi-locus outcrossing rates (0.95 to 0.99) and the progeny level multi-locus outcrossing rates (0.9 to 1.0) were high, indicating that peach palm is predominantly allogamous. The outcrossing rates among relatives were significantly different from zero (0.101 to 0.202), providing evidence for considerable biparental inbreeding within populations, probably due to farmers planting seeds of a small number of open-pollinated progenies in the same plot. The correlations of paternity estimates were low (0.051 to 0.112), suggesting a large number of pollen sources (9 to 20) participating in pollination of individual fruit bunches. Effective population size estimates suggest that current germplasm collections are insufficient for long-term ex situ conservation. As with most underutilized crops, on farm conservation is the most important component of an integrated conservation strategy

    Biología

    No full text

    Nomenclatural Transfers from Manfreda

    No full text

    Data from: The effect of neighborhood size on effective population size in theory and in practice

    No full text
    The distinction between the effective size of a population (Ne) and the effective size of its neighborhoods (Nn) has sometimes become blurred. Ne reflects the effect of random sampling on the genetic composition of a population of size N, whereas Nn is a measure of within-population spatial genetic structure and depends strongly on the dispersal characteristics of a species. Although Nn is independent of Ne, the reverse is not true. Using simulations of a population of annual plants, it was found that the effect of Nn on Ne was well approximated by Ne=N/(1−FIS), where FIS (determined by Nn) was evaluated population wide. Nn only had a notable influence of increasing Ne as it became smaller (less than or equal to16). In contrast, the effect of Nn on genetic estimates of Ne was substantial. Using the temporal method (a standard two-sample approach) based on 1000 single-nucleotide polymorphisms (SNPs), and varying sampling method, sample size (2–25% of N) and interval between samples (T=1–32 generations), estimates of Ne ranged from infinity to <0.1% of the true value (defined as Ne based on 100% sampling). Estimates were never accurate unless Nn and T were large. Three sampling techniques were tested: same-site resampling, different-site resampling and random sampling. Random sampling was the least biased method. Extremely low estimates often resulted when different-site resampling was used, especially when the population was large and the sample fraction was small, raising the possibility that this estimation bias could be a factor determining some very low Ne/N that have been published

    The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific

    No full text
    The world's oceans contain a complex mixture of micro-organisms that are for the most part, uncharacterized both genetically and biochemically. We report here a metagenomic study of the marine planktonic microbiota in which surface (mostly marine) water samples were analyzed as part of the Sorcerer II Global Ocean Sampling expedition. These samples, collected across a several-thousand km transect from the North Atlantic through the Panama Canal and ending in the South Pacific yielded an extensive dataset consisting of 7.7 million sequencing reads (6.3 billion bp). Though a few major microbial clades dominate the planktonic marine niche, the dataset contains great diversity with 85% of the assembled sequence and 57% of the unassembled data being unique at a 98% sequence identity cutoff. Using the metadata associated with each sample and sequencing library, we developed new comparative genomic and assembly methods. One comparative genomic method, termed "fragment recruitment," addressed questions of genome structure, evolution, and taxonomic or phylogenetic diversity, as well as the biochemical diversity of genes and gene families. A second method, termed "extreme assembly," made possible the assembly and reconstruction of large segments of abundant but clearly nonclonal organisms. Within all abundant populations analyzed, we found extensive intra-ribotype diversity in several forms: (1) extensive sequence variation within orthologous regions throughout a given genome; despite coverage of individual ribotypes approaching 500-fold, most individual sequencing reads are unique; (2) numerous changes in gene content some with direct adaptive implications; and (3) hypervariable genomic islands that are too variable to assemble. The intra-ribotype diversity is organized into genetically isolated populations that have overlapping but independent distributions, implying distinct environmental preference. We present novel methods for measuring the genomic similarity between metagenomic samples and show how they may be grouped into several community types. Specific functional adaptations can be identified both within individual ribotypes and across the entire community, including proteorhodopsin spectral tuning and the presence or absence of the phosphate-binding gene PstS
    corecore