21 research outputs found
ΠΡΠΎΡΠ½ΠΈΡΡ ΠΈ ΠΏΠΎΠ³ΠΈΠ±Π½ΠΈ: Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠΎΠ»ΡΠ½ΠΎΡΡΠΈ Π½Π° ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΉ Moina macrocopa (Straus, 1820) (Cladocera: Moinidae), ΠΈΠ½ΠΈΡΠΈΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΡΠ°ΠΌΠΊΠ°ΠΌΠΈ, Π²ΡΡΠ΅Π΄ΡΠΈΠΌΠΈ ΠΈΠ· ΠΏΠΎΠΊΠΎΡΡΠΈΡ ΡΡ ΡΠΈΡ
Freshwater salinization may have important implications for the abundance and diversity of
zooplankton, which play a key role in the functioning of aquatic ecosystems. Many of these animals
undergo developmental arrest in the embryonic stage, which allows them to survive harsh periods and
cope with seasonal unfavorable environmental conditions. We studied the effects of salinity in the
experiments with individuals and populations of the cladoceran Moina macrocopa on the life history
traits and population parameters important for cyclical development of animals: the hatching success
of resting eggs; the survival of hatchlings; individual performance of post- diapause females and
performance of populations initiated by post- diapause females. We observed a decreasing sequence
of salinities critical for traits and parameters studied in this work: from 8 g L -1, critical for hatching
of resting eggs, to 1 g L-1, critical for the ability of a population initiated by post- diapause females to
produce resting eggs. We conclude that the relatively low salinity (1 g L-1) that does not suppress the
hatching of resting eggs reduces the ecologically significant ability of the M. macrocopa populations
to replenish the bank of resting eggs. Thus, freshwater salinization, in the long term, will prevent the
re-establishment of M. macrocopa and most probably other freshwater cladoceran populations from
the banks of resting eggsΠΠ°ΡΠΎΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠ΅ΡΠ½ΠΎΠ²ΠΎΠ΄Π½ΡΡ
ΡΠΊΠΎΡΠΈΡΡΠ΅ΠΌ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ²Π΅ΡΡΠΈ ΠΊ Π·Π½Π°ΡΠΈΠΌΡΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΠ²ΠΈΡΠΌ Π΄Π»Ρ
ΡΠΈΡΠ»Π΅Π½Π½ΠΎΡΡΠΈ ΠΈ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·ΠΈΡ Π·ΠΎΠΎΠΏΠ»Π°Π½ΠΊΡΠΎΠ½Π°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΈΠ³ΡΠ°Π΅Ρ ΠΊΠ»ΡΡΠ΅Π²ΡΡ ΡΠΎΠ»Ρ Π² ΡΡΠ½ΠΊΡΠΈΠΎΠ½ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ
Π²ΠΎΠ΄Π½ΡΡ
ΡΠΊΠΎΡΠΈΡΡΠ΅ΠΌ. ΠΠ½ΠΎΠ³ΠΈΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»ΠΈ Π·ΠΎΠΎΠΏΠ»Π°Π½ΠΊΡΠΎΠ½Π° ΠΎΠ±Π»Π°Π΄Π°ΡΡ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡΡ ΠΊ Π·Π°Π΄Π΅ΡΠΆΠΊΠ΅
ΡΠ°Π·Π²ΠΈΡΠΈΡ Π½Π° ΡΡΠ°Π΄ΠΈΠΈ ΡΠΌΠ±ΡΠΈΠΎΠ½Π°, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΈΠΌ ΠΏΠ΅ΡΠ΅ΠΆΠΈΠ²Π°ΡΡ ΡΡΡΠΎΠ²ΡΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΡΡΡΠ΅ΡΡΠ²ΠΎΠ²Π°Π½ΠΈΡ
ΠΈ ΡΠΏΡΠ°Π²Π»ΡΡΡΡΡ Ρ ΡΠ΅Π·ΠΎΠ½Π½ΡΠΌΠΈ Π½Π΅Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΡΠΌΠΈ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌΠΈ ΠΎΠΊΡΡΠΆΠ°ΡΡΠ΅ΠΉ ΡΡΠ΅Π΄Ρ. ΠΡ ΠΈΠ·ΡΡΠΈΠ»ΠΈ
Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠΎΠ»ΡΠ½ΠΎΡΡΠΈ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Ρ
Ρ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠΌΠΈ ΠΎΡΠΎΠ±ΡΠΌΠΈ ΠΈ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΡΠΌΠΈ Π²Π΅ΡΠ²ΠΈΡΡΠΎΡΡΠΎΠ³ΠΎ
ΡΠ°ΡΠΊΠ° Moina macrocopa Π½Π° ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΈΡ
ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° ΠΈ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΎΠ½Π½ΡΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ,
ΠΎΠ±Π»Π°Π΄Π°ΡΡΠΈΠ΅ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡΡ Π΄Π»Ρ ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
: ΡΡΠΏΠ΅ΡΠ½ΠΎΡΡΡ ΡΠ΅Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ
ΠΏΠΎΠΊΠΎΡΡΠΈΡ
ΡΡ ΡΠΈΡ; Π²ΡΠΆΠΈΠ²Π°Π΅ΠΌΠΎΡΡΡ Π²ΡΠ»ΡΠΏΠΈΠ²ΡΠΈΡ
ΡΡ ΡΠ°ΡΠΊΠΎΠ²; ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΡΠ°ΠΌΠΎΠΊ,
Π²ΡΡΠ΅Π΄ΡΠΈΡ
ΠΈΠ· ΠΏΠΎΠΊΠΎΡΡΠΈΡ
ΡΡ ΡΠΈΡ ΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΉ, ΠΈΠ½ΠΈΡΠΈΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ°ΠΌΠΊΠ°ΠΌΠΈ ΠΏΠΎΡΠ»Π΅
Π΄ΠΈΠ°ΠΏΠ°ΡΠ·Ρ. ΠΡ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΠ»ΠΈ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΡΠΎΠ³Π° ΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ ΠΈΠ·ΡΡΠ°Π΅ΠΌΡΡ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ²
ΠΊ ΡΠΎΠ»ΡΠ½ΠΎΡΡΠΈ: ΠΎΡ 8 Π³/Π» β ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΠ»Π΅Π½ΠΎΡΡΠΈ Π΄Π»Ρ Π²ΡΠ»ΡΠΏΠ»Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠΎΡΡΠΈΡ
ΡΡ ΡΠΈΡ, Π΄ΠΎ 1 Π³/Π» β
ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΠ»ΡΠ½ΠΎΡΡΠΈ Π΄Π»Ρ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ, ΠΈΠ½ΠΈΡΠΈΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠ°ΠΌΠΊΠ°ΠΌΠΈ, Π²ΡΡΠ΅Π΄ΡΠΈΠΌΠΈ
ΠΈΠ· ΡΠΈΡ ΠΏΠΎΡΠ»Π΅ Π΄ΠΈΠ°ΠΏΠ°ΡΠ·Ρ, ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ ΠΏΠΎΠΊΠΎΡΡΠΈΠ΅ΡΡ ΡΠΉΡΠ°. ΠΡ Π·Π°ΠΊΠ»ΡΡΠΈΠ»ΠΈ, ΡΡΠΎ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½ΠΈΠ·ΠΊΠ°Ρ
ΡΠΎΠ»ΡΠ½ΠΎΡΡΡ (1 Π³/Π»), ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π΅ Π²Π»ΠΈΡΠ»Π° Π½Π° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΡΠ΅Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΠΏΠΎΠΊΠΎΡΡΠΈΡ
ΡΡ ΡΠΈΡ, Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΎ
Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ Π½Π° ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΡΡ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΉ M. macrocopa ΠΏΠΎΠΏΠΎΠ»Π½ΡΡΡ
Π±Π°Π½ΠΊ ΠΏΠΎΠΊΠΎΡΡΠΈΡ
ΡΡ ΡΠΈΡ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π·Π°ΡΠΎΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠ΅ΡΠ½ΡΡ
Π²ΠΎΠ΄ Π² Π΄ΠΎΠ»Π³ΠΎΡΡΠΎΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π΅
Π±ΡΠ΄Π΅Ρ ΠΏΡΠ΅ΠΏΡΡΡΡΠ²ΠΎΠ²Π°ΡΡ Π²ΠΎΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΉ ΡΠ°ΡΠΊΠΎΠ² M. macrocopa ΠΈ, ΡΠΊΠΎΡΠ΅Π΅ Π²ΡΠ΅Π³ΠΎ, Π΄ΡΡΠ³ΠΈΡ
ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΉ ΠΏΡΠ΅ΡΠ½ΠΎΠ²ΠΎΠ΄Π½ΡΡ
Π²Π΅ΡΠ²ΠΈΡΡΠΎΡΡΡΡ
ΡΠ°ΠΊΠΎΠΎΠ±ΡΠ°Π·Π½ΡΡ
ΠΈΠ· Π±Π°Π½ΠΊΠΎΠ² ΠΏΠΎΠΊΠΎΡΡΠΈΡ
ΡΡ ΡΠΈ
Global data set of long-term summertime vertical temperature profiles in 153 lakes
Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change
Global data set of long-term summertime vertical temperature profiles in 153 lakes
Measurement(s) : temperature of water, temperature profile
Technology Type(s) : digital curation
Factor Type(s) : lake location, temporal interval
Sample Characteristic - Environment : lake, reservoir
Sample Characteristic - Location : global
Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14619009Climate change and other anthropogenic stressors have led to long-term changes in the thermal structure, including surface temperatures, deepwater temperatures, and vertical thermal gradients, in many lakes around the world. Though many studies highlight warming of surface water temperatures in lakes worldwide, less is known about long-term trends in full vertical thermal structure and deepwater temperatures, which have been changing less consistently in both direction and magnitude. Here, we present a globally-expansive data set of summertime in-situ vertical temperature profiles from 153 lakes, with one time series beginning as early as 1894. We also compiled lake geographic, morphometric, and water quality variables that can influence vertical thermal structure through a variety of potential mechanisms in these lakes. These long-term time series of vertical temperature profiles and corresponding lake characteristics serve as valuable data to help understand changes and drivers of lake thermal structure in a time of rapid global and ecological change
The Effect of Food Concentration on the Juvenile Somatic Growth Rate of Body Length, Fecundity and the Production of Resting Eggs by Moina brachiata (Crustacea: Cladocera) Single Females
Π Π°Π±ΠΎΡΠ° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΎΠ΄Π½ΠΎΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π²ΠΎΠ΄ΠΎΡΠΎΡΠ»ΠΈ Chlorella vulgaris Π½Π° ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° ΡΠ°ΠΌΠΎΠΊ M. brachiata (Π΄Π»ΠΈΠ½Π° ΡΠ΅Π»Π°, ΡΠ΄Π΅Π»ΡΠ½Π°Ρ ΡΠ²Π΅Π½ΠΈΠ»ΡΠ½Π°Ρ ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠΎΡΡΠ°, ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠΎΡΠΎΠΌΠΊΠΎΠ², ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ°ΠΌΠΎΠΊ, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ
ΡΡΠΈΠΏΠΏΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠΉΡΠ°). ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ°Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΊΠΎΡΠΌΠ°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΠ°Ρ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ΅, 100 ΡΡΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ/ΠΌΠ», ΠΎΠΊΠ°Π·ΡΠ²Π°Π»Π° Π»ΠΈΠΌΠΈΡΠΈΡΡΡΡΠ΅Π΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΡΠ°Π·ΠΌΠ΅Ρ ΡΠ°ΠΌΠΎΠΊ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΌΡΡΠ²Π°, ΡΠ²Π΅Π½ΠΈΠ»ΡΠ½ΡΡ ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠΎΡΡΠ° ΠΈ ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΠΈΡΠΎΡΡΡ; ΡΠ°ΠΊΠΆΠ΅ Π΄Π°Π½Π½Π°Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΏΠΈΡΠΈ Π²ΡΠ·ΡΠ²Π°Π»Π° ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΊΠΎΡΡΠΈΡ
ΡΡ ΡΠΈΡ Ρ ΡΠ°ΠΌΠΎΠΊ. ΠΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΊΠΎΡΠΌΠ°, ΡΠ°Π·ΠΌΠ΅Ρ ΡΠ°ΠΌΠΎΠΊ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΌΡΡΠ²Π°, ΠΈΡ
ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠΎΡΡΠ° ΠΈ ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΠΈΡΠΎΡΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π»ΠΈ, Π° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ°ΠΌΠΎΠΊ, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ
ΡΡΠΈΠΏΠΏΠΈΡΠΌΡ, ΡΠ½ΠΈΠΆΠ°Π»ΠΎΡΡ. ΠΡΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΡΠ΅ΡΡΠΈΡΡΠ΅ΠΌΡΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΠΏΠΈΡΠΈ (400 ΠΈ 800 ΡΡΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ/ΠΌΠ») ΡΠ°Π·ΠΌΠ΅Ρ ΡΠ°ΠΌΠΎΠΊ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΌΡΡΠ²Π°, ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠΎΡΡΠ° ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠΎΡΠ²ΠΈΠ²ΡΠΈΡ
ΡΡ ΠΏΠΎΡΠΎΠΌΠΊΠΎΠ² Π±ΡΠ»ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΌΠΈ, ΠΏΡΠΈ ΡΡΠΎΠΌ Π½ΠΈ ΠΎΠ΄Π½Π° ΠΈΠ· ΡΠ°ΠΌΠΎΠΊ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ΅ Π½Π΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²ΡΠ²Π°Π»Π° ΠΏΠΎΠΊΠΎΡΡΠΈΡ
ΡΡ ΡΠΈΡ. ΠΡ ΡΠ°ΠΊΠΆΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΏΠΈΡΠΈ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π»ΠΎΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ½ΡΠΊΠΎΠ΅ ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠ΅ Π½Π° ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΈΡ
ΠΏΠΎΡΠΎΠΌΠΊΠΎΠ² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°ΡΡ Π»Π°ΡΠ΅Π½ΡΠ½ΡΠ΅ ΡΠΉΡΠ°. ΠΡΡΡΡΡΡΠ²ΠΈΠ΅ ΡΡΠΈΠΏΠΏΠΈΡΠΌΠΎΠ² Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΎΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΠΏΠΈΡΠΈ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Ρ
Π΄Π»Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ½ΡΠΊΠΈΡ
ΠΎΡΠΎΠ±Π΅ΠΉ ΠΈ ΠΈΡ
ΠΏΠΎΡΠΎΠΌΠΊΠΎΠ² (400 ΡΡΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ/ΠΌΠ»). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌ, ΡΡΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½Π½ΠΎΡΡΡ ΠΏΠΈΡΠ΅ΠΉ Π²ΡΡΠ΅ 400 ΡΡΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ/ΠΌΠ» Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½Π° Π΄Π»Ρ ΠΏΠ°ΡΡΠ΅Π½ΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°ΠΌΠΎΠΊ M. brachiata. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΎΠ± ΡΡΠΎΠ²Π½Π΅ ΠΏΠΈΡΠ΅Π²ΠΎΠΉ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½Π½ΠΎΡΡΠΈ, Π²ΡΠ·ΡΠ²Π°ΡΡΠ΅ΠΉ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΊΠΎΡΡΠΈΡ
ΡΡ ΡΠΈΡ Ρ ΡΠ°ΠΌΠΎΠΊ M. brachiata, ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π²ΠΏΠ΅ΡΠ²ΡΠ΅.The study addresses the effect of different food concentrations of green alga Chlorella vulgaris on the life cycle parameters (the body length, specific juvenile somatic growth rate of body length, the number of offspring in the first clutch of parthenogenetic females and the number of females producing resting eggs) of the individually cultivated females of M. brachiata. The lowest food concentration used in the experiment, 100 thousand cells/ml, had a limiting effect on such parameters as the size of females at the first reproduction, juvenile somatic growth rate of body length and fecundity; it also induced the production of resting eggs by females. With food concentration increase, the size of females at the first reproduction, their somatic growth rate of body length and fecundity also increased, and the number of females that produced resting eggs decreased. Under maximal food concentrations (400 and 800 thousand cells/ml) the size of females at the first reproduction, the somatic growth rates of body length and the number of hatched offspring were the largest, and there were no females producing ephippial eggs. We also tested the effect of food concentration under which the maternal generation was kept on the ability of the offspring generation to produce resting eggs. The production of resting eggs failed to occur only at the highest food concentrations for maternal females and their offspring (400 thousand cells/ml). Thus, we concluded that food concentration above 400 thousand cells/ml is favorable concentration for parthenogenetic reproduction of M. brachiata. Since there are no literature data on what food concentration induces the production of resting eggs for this species, the results define the trophic conditions that induce production of resting eggs in M. brachiata
Biological and Ecological Features, Trophic Structure and Energy Flow in Meromictic Lakes
Case studies and typical examples for meromictic lakes are used to provide a review of the biology and ecology of these ecosystems. Water column in meromictic lakes is not entirely mixed. These lakes are chemically and/or thermally stratified for several years and have several specific ecological features. The chemocline βthe habitat created between the mixolimnion on top and monimolimnion belowβis characterised by the existence of complex bacterial communities, autotrophic and heterotrophic protists and metazooplankton, commonly dominated by rotifers , high rates of oxygenic and anoxygenic photosynthesis and some biogeochemical processes . In these lakes, the sulphur, carbon and nitrogen cycles are partially coupled. However, a large number of bacterial and archaeal taxa, especially in anoxic waters, are still unidentified. An unaccomplished important task is to both investigate the uncultivated microbial diversity and access metabolic potential of the bacterial communities in meromictic lakes. The different components of the chemocline communities represent the ingredients of microbial loop that probably links the production of organic matter in anoxic waters with the classical grazer food web . However, in most of such lakes, the food web is not quite quantified. The classical grazer food web in meromictic lakes is often truncated, especially because fish and other predators are often absent. Meromixis has several effects on the grazer food web. First, the lack of mixing favours the loss of nutrients into the monimolimnion, which thus controls nutrient availability and the development of the phytoplankton . Because there is virtually no annual mixing in meromictic lakes, spring algal blooms can be less pronounced. The anoxic monimolimnion prevents zooplankton from vertical migrations that change the nature of food web interactions. The relatively large size of the monimolimnion and prevailing anoxic conditions adversely affect the biota. With the development of anoxic monimolimnion, the size of the photic and aerobic zones decreases, benthic community is altered and habitat for zooplankton and fish is reduced. The zooplankton community in meromictic lakes varies in the species composition and abundance. Depending on salinity and chemical composition of the mixolimnion, the zooplankton may include certain typical cladocerans and copepods . If the salinity increases, the zooplankton can shift to Artemia dominated community, typical of hypersaline lakes. Concluding, complex trophic links, coupling of nutrients cycles and anoxic and oxic food web components are peculiar features that make meromictic lakes natural laboratories to study the complexity of the food webs and biological interactions
Conclusion: Ecology of Meromictic Lakes
The term meromixis was introduced more than 80 years ago to denote lakes that do not annually mix completely. Since then our understanding of meromictic lakes has considerably advanced. Physical processes support the difference in water density between deep (monimolimnion ) and surface (mixolimnion ) waters in meromictic lakes; such lakes reveal complex biogeochemical interactions that contribute to the maintenance of meromixis. This Conclusion chapter of the book on Ecology of Meromictic Lakes presents the general overview of physical, chemical and biological properties of meromictic lakes, based partly on the foregoing 12 chapters. The broad spectrum of meromixis supported by different processes in lakes located in different regions and climates is presented. We stress the importance of undisturbed sediments in meromictic lakes as paleolimnological archives and demonstrate how this information can be used to reconstruct lake history and development over longer time periods. The effects of switch from holomictic to meromictic regime and vice versa on the food web and biological community are demonstrated by some of the case study lakes. However, we do not have the mathematical or modeling tools to understand all the causal factor for processes that switch the mixing regimes of lakes. Man-made meromictic lakes (pit lakes) can be used as lake management tools to control water quality in lakes . We discuss that numerical simulations and model forecasts are important tools to predict the mixing regimes in both man-made and natural meromictic lakes. Biogeochemical reactions play important role in cycling of nutrients in meromictic lakes. Both anoxygenic photosynthesis and chemolithoautotrophy are exceptionally important for fixation of inorganic carbon in organic matter in meromictic lakes. These carbon fixation activities link the carbon cycle with the sulphur, nitrogen and iron cycles. Studies of meromictic lakesβaquatic systems where physics, biogeochemistry and ecology interact intensivelyβgive us new insights into the limnology of inland lakes
Introduction: Meromictic Lakes, Their Terminology and Geographic Distribution
We start with the recent developments and reasons why the meromictic lakes should get more attention in limnological literature. Thereafter, we define monimolimnion , mixolimnion and some other terms related to meromixis. The definition of Hutchinson for meromictic lakes holds for more than 60 years while some modification is required. We differentiate between a meromictic lake and a non-meromictic ones, despite the fact that for deep waters the patterns of recirculation in non-meromictic lakes may be similar to meromixis. We also refer briefly to the classification schemes of meromixis and list processes involved in sustaining stratification. Regions on the Globe that produce salinity gradients in surface waters; mining areas, where geochemistry is more actively operative; and areas where waters of different compositions meet may promote the development of such conditions in lakes. Meromixis is a much more dynamic process than it is often understood. If monimolimnion gets eroded, the meromixis can terminate, while changes in the hydrology can turn a lake meromictic. Finally, we briefly introduce here the structure of this book, which has three parts. Part I focuses on physical (Chap. 2), chemical (Chap. 3) and biological (Chap. 4) properties of meromictic lakes. Part II presents eight case studies in separate chapters including the regional studies on different meromictic lakes in five continents. Part III (Chap. 13) is based mainly on the brief conclusion summaries derived from the preceding 12 chapters with editorsβ remarks. Lastly, this book is an attempt to update our available knowhow and expertise on the existing state-of-the-art information on meromictic lakes and the literature references that can form the basis for future studies on meromictic lakes
The Effect of Food Concentration on the Juvenile Somatic Growth Rate of Body Length, Fecundity and the Production of Resting Eggs by Moina brachiata (Crustacea: Cladocera) Single Females
Π Π°Π±ΠΎΡΠ° ΠΏΠΎΡΠ²ΡΡΠ΅Π½Π° ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΎΠ΄Π½ΠΎΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ Π²ΠΎΠ΄ΠΎΡΠΎΡΠ»ΠΈ Chlorella vulgaris Π½Π° ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° ΡΠ°ΠΌΠΎΠΊ M. brachiata (Π΄Π»ΠΈΠ½Π° ΡΠ΅Π»Π°, ΡΠ΄Π΅Π»ΡΠ½Π°Ρ ΡΠ²Π΅Π½ΠΈΠ»ΡΠ½Π°Ρ ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠΎΡΡΠ°, ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠΎΡΠΎΠΌΠΊΠΎΠ², ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ°ΠΌΠΎΠΊ, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ
ΡΡΠΈΠΏΠΏΠΈΠ°Π»ΡΠ½ΡΠ΅ ΡΠΉΡΠ°). ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ°Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΊΠΎΡΠΌΠ°, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΠ°Ρ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ΅, 100 ΡΡΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ/ΠΌΠ», ΠΎΠΊΠ°Π·ΡΠ²Π°Π»Π° Π»ΠΈΠΌΠΈΡΠΈΡΡΡΡΠ΅Π΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΡΠ°Π·ΠΌΠ΅Ρ ΡΠ°ΠΌΠΎΠΊ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΌΡΡΠ²Π°, ΡΠ²Π΅Π½ΠΈΠ»ΡΠ½ΡΡ ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΡΡ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠΎΡΡΠ° ΠΈ ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΠΈΡΠΎΡΡΡ; ΡΠ°ΠΊΠΆΠ΅ Π΄Π°Π½Π½Π°Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΏΠΈΡΠΈ Π²ΡΠ·ΡΠ²Π°Π»Π° ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΊΠΎΡΡΠΈΡ
ΡΡ ΡΠΈΡ Ρ ΡΠ°ΠΌΠΎΠΊ. ΠΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΊΠΎΡΠΌΠ°, ΡΠ°Π·ΠΌΠ΅Ρ ΡΠ°ΠΌΠΎΠΊ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΌΡΡΠ²Π°, ΠΈΡ
ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠΎΡΡΠ° ΠΈ ΠΏΠ»ΠΎΠ΄ΠΎΠ²ΠΈΡΠΎΡΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π»ΠΈ, Π° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ°ΠΌΠΎΠΊ, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΡ
ΡΡΠΈΠΏΠΏΠΈΡΠΌΡ, ΡΠ½ΠΈΠΆΠ°Π»ΠΎΡΡ. ΠΡΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ
ΡΠ΅ΡΡΠΈΡΡΠ΅ΠΌΡΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΠΏΠΈΡΠΈ (400 ΠΈ 800 ΡΡΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ/ΠΌΠ») ΡΠ°Π·ΠΌΠ΅Ρ ΡΠ°ΠΌΠΎΠΊ Π² ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΌΡΡΠ²Π°, ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΊΠΎΡΠΎΡΡΡ ΡΠΎΡΡΠ° ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠΎΡΠ²ΠΈΠ²ΡΠΈΡ
ΡΡ ΠΏΠΎΡΠΎΠΌΠΊΠΎΠ² Π±ΡΠ»ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠΌΠΈ, ΠΏΡΠΈ ΡΡΠΎΠΌ Π½ΠΈ ΠΎΠ΄Π½Π° ΠΈΠ· ΡΠ°ΠΌΠΎΠΊ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ΅ Π½Π΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²ΡΠ²Π°Π»Π° ΠΏΠΎΠΊΠΎΡΡΠΈΡ
ΡΡ ΡΠΈΡ. ΠΡ ΡΠ°ΠΊΠΆΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΏΠΈΡΠΈ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π»ΠΎΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ½ΡΠΊΠΎΠ΅ ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠ΅ Π½Π° ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΈΡ
ΠΏΠΎΡΠΎΠΌΠΊΠΎΠ² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°ΡΡ Π»Π°ΡΠ΅Π½ΡΠ½ΡΠ΅ ΡΠΉΡΠ°. ΠΡΡΡΡΡΡΠ²ΠΈΠ΅ ΡΡΠΈΠΏΠΏΠΈΡΠΌΠΎΠ² Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΎΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΉ ΠΏΠΈΡΠΈ Π² ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Ρ
Π΄Π»Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ½ΡΠΊΠΈΡ
ΠΎΡΠΎΠ±Π΅ΠΉ ΠΈ ΠΈΡ
ΠΏΠΎΡΠΎΠΌΠΊΠΎΠ² (400 ΡΡΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ/ΠΌΠ»). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌ, ΡΡΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½Π½ΠΎΡΡΡ ΠΏΠΈΡΠ΅ΠΉ Π²ΡΡΠ΅ 400 ΡΡΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ/ΠΌΠ» Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½Π° Π΄Π»Ρ ΠΏΠ°ΡΡΠ΅Π½ΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ°ΠΌΠΎΠΊ M. brachiata. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΎΠ± ΡΡΠΎΠ²Π½Π΅ ΠΏΠΈΡΠ΅Π²ΠΎΠΉ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠ΅Π½Π½ΠΎΡΡΠΈ, Π²ΡΠ·ΡΠ²Π°ΡΡΠ΅ΠΉ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠΊΠΎΡΡΠΈΡ
ΡΡ ΡΠΈΡ Ρ ΡΠ°ΠΌΠΎΠΊ M. brachiata, ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ Π²ΠΏΠ΅ΡΠ²ΡΠ΅.The study addresses the effect of different food concentrations of green alga Chlorella vulgaris on the life cycle parameters (the body length, specific juvenile somatic growth rate of body length, the number of offspring in the first clutch of parthenogenetic females and the number of females producing resting eggs) of the individually cultivated females of M. brachiata. The lowest food concentration used in the experiment, 100 thousand cells/ml, had a limiting effect on such parameters as the size of females at the first reproduction, juvenile somatic growth rate of body length and fecundity; it also induced the production of resting eggs by females. With food concentration increase, the size of females at the first reproduction, their somatic growth rate of body length and fecundity also increased, and the number of females that produced resting eggs decreased. Under maximal food concentrations (400 and 800 thousand cells/ml) the size of females at the first reproduction, the somatic growth rates of body length and the number of hatched offspring were the largest, and there were no females producing ephippial eggs. We also tested the effect of food concentration under which the maternal generation was kept on the ability of the offspring generation to produce resting eggs. The production of resting eggs failed to occur only at the highest food concentrations for maternal females and their offspring (400 thousand cells/ml). Thus, we concluded that food concentration above 400 thousand cells/ml is favorable concentration for parthenogenetic reproduction of M. brachiata. Since there are no literature data on what food concentration induces the production of resting eggs for this species, the results define the trophic conditions that induce production of resting eggs in M. brachiata