20 research outputs found

    Cosmological Parameters Degeneracies and Non-Gaussian Halo Bias

    Get PDF
    We study the impact of the cosmological parameters uncertainties on the measurements of primordial non-Gaussianity through the large-scale non-Gaussian halo bias effect. While this is not expected to be an issue for the standard LCDM model, it may not be the case for more general models that modify the large-scale shape of the power spectrum. We consider the so-called local non-Gaussianity model and forecasts from planned surveys, alone and combined with a Planck CMB prior. In particular, we consider EUCLID- and LSST-like surveys and forecast the correlations among fNLf_{\rm NL} and the running of the spectral index αs\alpha_s, the dark energy equation of state ww, the effective sound speed of dark energy perturbations cs2c^2_s, the total mass of massive neutrinos MÎœ=∑mÎœM_\nu=\sum m_\nu, and the number of extra relativistic degrees of freedom NÎœrelN_\nu^{rel}. Neglecting CMB information on fNLf_{\rm NL} and scales k>0.03hk > 0.03 h/Mpc, we find that, if NÎœrelN_\nu^{\rm rel} is assumed to be known, the uncertainty on cosmological parameters increases the error on fNLf_{\rm NL} by 10 to 30% depending on the survey. Thus the fNLf_{\rm NL} constraint is remarkable robust to cosmological model uncertainties. On the other hand, if NÎœrelN_\nu^{\rm rel} is simultaneously constrained from the data, the fNLf_{\rm NL} error increases by ∌80\sim 80%. Finally, future surveys which provide a large sample of galaxies or galaxy clusters over a volume comparable to the Hubble volume can measure primordial non-Gaussianity of the local form with a marginalized 1--σ\sigma error of the order ΔfNL∌2−5\Delta f_{\rm NL} \sim 2-5, after combination with CMB priors for the remaining cosmological parameters. These results are competitive with CMB bispectrum constraints achievable with an ideal CMB experiment.Comment: 17 pages, 1 figure added, typos corrected, comments added, matches the published versio

    Cosmological distance indicators

    Full text link
    We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time delays from strongly lensed quasars currently provide constraints on H0H_0 with < 4% uncertainty, and with 1% within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to z <~ 0.8 with galaxies and z ~ 2 with Ly-α\alpha forest, providing precise distance measurements and H0H_0 with < 2% uncertainty in flat Λ\LambdaCDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at z ~ 0.8 and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach 1% uncertainty in determining H0H_0, to assess the current tension in H0H_0 measurements that could indicate new physics.Comment: Review article accepted for publication in Space Science Reviews (Springer), 45 pages, 10 figures. Chapter of a special collection resulting from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in the Space Ag

    Testable anthropic predictions for dark energy

    Get PDF
    In the context of models where the dark energy density \rD is a random variable, anthropic selection effects may explain both the "old" cosmological constant problem and the "time coincidence". We argue that this type of solution to both cosmological constant problems entails a number of definite predictions, which can be checked against upcoming observations. In particular, in models where the dark energy density is a discrete variable, or where it is a continuous variable due to the potential energy of a single scalar field, the anthropic approach predicts that the dark energy equation of state is pD=−ρDp_D=-\rho_D with a very high accuracy. It is also predicted that the dark energy density is greater than the currently favored value ΩD≈0.7\Omega_D\approx 0.7. Another prediction, which may be testable with an improved understanding of galactic properties, is that the conditions for civilizations to emerge arise mostly in galaxies completing their formation at low redshift, z≈1z\approx 1. Finally, there is a prediction which may not be easy to test observationally: our part of the universe is going to recollapse eventually. However, the simplest models predict that it will take more than a trillion years of accelerated expansion before this happens.Comment: 21 pages, 3 figures. Two errors in the published version are pointed out and corrected. Further typos correcte

    Cosmological constraints from galaxy clustering

    Get PDF
    In this manuscript I review the mathematics and physics that underpins recent work using the clustering of galaxies to derive cosmological model constraints. I start by describing the basic concepts, and gradually move on to some of the complexities involved in analysing galaxy redshift surveys, focusing on the 2dF Galaxy Redshift Survey (2dFGRS) and the Sloan Digital Sky survey (SDSS). Difficulties within such an analysis, particularly dealing with redshift space distortions and galaxy bias are highlighted. I then describe current observations of the CMB fluctuation power spectrum, and consider the importance of measurements of the clustering of galaxies in light of recent experiments. Finally, I provide an example joint analysis of the latest CMB and large-scale structure data, leading to a set of parameter constraints.Comment: 30 pages, 13 figures. Lecture given at Third Aegean Summer School, The invisible universe: Dark matter and Dark energ

    On the spin distributions of Λ\LambdaCDM haloes

    Full text link
    We used merger trees realizations, predicted by the extended Press-Schechter theory, in order to study the growth of angular momentum of dark matter haloes. Our results showed that: 1) The spin parameter λâ€Č\lambda' resulting from the above method, is an increasing function of the present day mass of the halo. The mean value of λâ€Č\lambda' varies from 0.0343 to 0.0484 for haloes with present day masses in the range of 109h−1M⊙ 10^9\mathrm{h}^{-1}M_{\odot} to 1014h−1M⊙10^{14}\mathrm{h}^{-1}M_{\odot}. 2)The distribution of λâ€Č\lambda' is close to a log-normal, but, as it is already found in the results of N-body simulations, the match is not satisfactory at the tails of the distribution. A new analytical formula that approximates the results much more satisfactorily is presented. 3) The distribution of the values of λâ€Č\lambda' depends only weakly on the redshift. 4) The spin parameter of an halo depends on the number of recent major mergers. Specifically the spin parameter is an increasing function of this number.Comment: 10 pages, 8 figure

    Measuring the metric: a parametrized post-Friedmanian approach to the cosmic dark energy problem

    Get PDF
    We argue for a ``parametrized post-Friedmanian'' approach to linear cosmology, where the history of expansion and perturbation growth is measured without assuming that the Einstein Field Equations hold. As an illustration, a model-independent analysis of 92 type Ia supernovae demonstrates that the curve giving the expansion history has the wrong shape to be explained without some form of dark energy or modified gravity. We discuss how upcoming lensing, galaxy clustering, cosmic microwave background and Lyman alpha forest observations can be combined to pursue this program, which generalizes the quest for a dark energy equation of state, and forecast the accuracy that the proposed SNAP satellite can attain.Comment: Replaced to match accepted PRD version. References and another example added, section III omitted since superceded by astro-ph/0207047. 11 PRD pages, 7 figs. Color figs and links at http://www.hep.upenn.edu/~max/gravity.html or from [email protected]

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF
    corecore