52 research outputs found

    Hemodynamic effects of intravenous amiodarone

    Get PDF
    Amiodarone is a potent antiarrhythmic agent that is effective in controlling both atrial and ventricular arrhythmias. Recently, intravenous administration was demonstrated to be effective in the acute management of rhythm disorders and, in addition, appeared to shorten the loading period normally required for oral drug administration. This investigation examined the hemodynamic effects of amiodarone after both acute intravenous bolus and continuous intravenous administration. Patients with a left ventricular ejection fraction greater than 0.35 experienced improved cardiac performance due to both acute and chronic peripheral vasodilation. However, patients with a lower ejection fraction developed a 20% decrease in cardiac index and clinically significant elevation of right heart pressures after acute bolus administration; these changes were variably compensated for by peripheral vasodilation when the drug was administered intravenously over 3 to 5 days continuously. Therefore, intravenous amiodarone can result in significant impairment of left ventricular performance in patients with preexisting left ventricular dysfunction

    Stimulant Reduction Intervention using Dosed Exercise (STRIDE) - CTN 0037: Study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a need for novel approaches to the treatment of stimulant abuse and dependence. Clinical data examining the use of exercise as a treatment for the abuse of nicotine, alcohol, and other substances suggest that exercise may be a beneficial treatment for stimulant abuse, with direct effects on decreased use and craving. In addition, exercise has the potential to improve other health domains that may be adversely affected by stimulant use or its treatment, such as sleep disturbance, cognitive function, mood, weight gain, quality of life, and anhedonia, since it has been shown to improve many of these domains in a number of other clinical disorders. Furthermore, neurobiological evidence provides plausible mechanisms by which exercise could positively affect treatment outcomes. The current manuscript presents the rationale, design considerations, and study design of the National Institute on Drug Abuse (NIDA) Clinical Trials Network (CTN) CTN-0037 Stimulant Reduction Intervention using Dosed Exercise (STRIDE) study.</p> <p>Methods/Design</p> <p>STRIDE is a multisite randomized clinical trial that compares exercise to health education as potential treatments for stimulant abuse or dependence. This study will evaluate individuals diagnosed with stimulant abuse or dependence who are receiving treatment in a residential setting. Three hundred and thirty eligible and interested participants who provide informed consent will be randomized to one of two treatment arms: Vigorous Intensity High Dose Exercise Augmentation (DEI) or Health Education Intervention Augmentation (HEI). Both groups will receive TAU (i.e., usual care). The treatment arms are structured such that the quantity of visits is similar to allow for equivalent contact between groups. In both arms, participants will begin with supervised sessions 3 times per week during the 12-week acute phase of the study. Supervised sessions will be conducted as one-on-one (i.e., individual) sessions, although other participants may be exercising at the same time. Following the 12-week acute phase, participants will begin a 6-month continuation phase during which time they will attend one weekly supervised DEI or HEI session.</p> <p>Clinical Trials Registry</p> <p>ClinicalTrials.gov, <a href="http://www.clinicaltrials.gov/ct2/show/NCT01141608">NCT01141608</a></p> <p><url>http://clinicaltrials.gov/ct2/show/NCT01141608?term=Stimulant+Reduction+Intervention+using+Dosed+Exercise&rank=1</url></p

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase&nbsp;1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation&nbsp;disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age&nbsp; 6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score&nbsp; 652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc&nbsp;= 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N&nbsp;= 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in&nbsp;Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in&nbsp;Asia&nbsp;and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    AN EXPERIMENTAL AND THEORETICAL INVESTIGATION OF THE RHEOLOGICAL PROPERTIES OF DISPERSIONS OF COLLOIDAL PARTICLES IN A POLYMERIC FLUID (FUMED SILICA, POLYDIMETHYLSILOXANE, PHENOMENOLOGICAL, BEAD-SPRING)

    No full text
    Steady state, stress relaxation and stress growth rheological properties were measured for dispersions composed of a colloidal sized fumed silica in polydimethylsiloxane fluids. These filled fluids exhibited (i) shear thinning steady state properties, (ii) stress relaxation whose rate increased as the previous shear rate increased, and (iii) stress growth functions which could exhibit large stress growth overshoot. The polydimethylsiloxane molecular weight determined if stress growth maxima were observed; specifically, if the dispersion\u27s polydimethylsiloxane molecular weight was below or greatly exceeded the entanglement molecular weight, significant stress growth maxima were not observed. However, when the dispersion\u27s polydimethylsiloxane molecular weight only slightly exceeded the entanglement molecular weight, large stress growth maxima were observed after sufficient rest in the undeformed state. The fumed silica concentration only affected quantitative but not qualitative changes in the dispersion\u27s rheological properties. The experimentally observed rheological properties are consistent with a molecular deformation mechanism where particles in a dispersion do not directly interact, but rather interact via entanglements of surface adsorbed polymer chains with their surroundings. Purely viscoelastic, purely microstructural and combined viscoelastic/microstructural phenomenological models were formulated to predict the effects of the deformation history on steady state, stress relaxation and stress growth rheological properties for the fumed silica/polydimethylsiloxane dispersions. The purely viscoelastic and purely microstructural models were unable to correctly predict even qualitatively the experimentally observed rheological properties. Combined viscoelastic/microstructural models were able to predict all the qualitative features of the experimental data. However, quantitative descriptions of the experimental data by the combined viscoelastic/microstructural models suffered the following deficiencies (i) the effects of previous deformations disappeared too quickly, and (ii) a single set of model constants could not be used to describe quantitatively the steady state, stress relaxation and stress growth properties. A molecular model was derived to describe interactions of polymer chains adsorbed on adjacent particles. Bead-spring assemblages attached to planar surfaces were used to predict the force required to maintain the motion of one of the surfaces. The interlayer bead interactions were described by a hydrodynamic drag coefficient which depended on the weight fraction of the adjacent layer beads in the vicinity

    Computed Tomography Angiography in the Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) Study

    No full text
    BACKGROUND: The Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) study validated noninvasive imaging tests of intracranial atherosclerosis against catheter angiography in a prospective, blinded, multicenter setting. Critical evaluation of transcranial Doppler (TCD) and magnetic resonance angiography in the SONIA study standardized their performance and interpretation. We performed a similar analysis of computed tomography angiography (CTA) for the detection of intracranial stenosis. METHODS: Multicenter standardization of image acquisition and blinded, central interpretation of CTA performance were conducted in concert with the Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) trial. Measurements of the intracranial arterial diameter were obtained to derive stenosis values. Correlation with catheter angiography was used to assess CTA performance characteristics. RESULTS: CTA measurements of intracranial stenosis were obtained in 120 vessel segments, with angiographic correlation in 52. CTA was performed as a noninvasive study prior to conventional angiography. CTA stenoses of 50-99% or a flow gap were identified in 15 of 52 vessel segments, stenoses of <50% in 5 of 52, and normal arterial diameters in 32 of 52 vessel segments. Based on the digital subtraction angiography (DSA) stenosis defined as 50-99%, the positive predictive value (PPV) of CTA was only 46.7% (95% CI 21.3-73.4) and the negative predictive value (NPV) was 73.0% (95% CI 55.9-86.2). For DSA stenosis defined as 70-99%, the PPV of CTA was 13.3% (95% CI 1.7-40.5) and the NPV was 83.8% (95% CI 68.0-93.8). CONCLUSIONS: CTA can accurately rule out the presence of severe stenosis due to intracranial atherosclerosis and may eliminate the need for angiography in many cases. Further prospective, blinded evaluation of CTA and optimization of cutpoints to predict angiographic disease will facilitate future trials of intracranial atherosclerosis

    Computed Tomography Angiography in the Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) Study.

    No full text
    BackgroundThe Stroke Outcomes and Neuroimaging of Intracranial Atherosclerosis (SONIA) study validated noninvasive imaging tests of intracranial atherosclerosis against catheter angiography in a prospective, blinded, multicenter setting. Critical evaluation of transcranial Doppler (TCD) and magnetic resonance angiography in the SONIA study standardized their performance and interpretation. We performed a similar analysis of computed tomography angiography (CTA) for the detection of intracranial stenosis.MethodsMulticenter standardization of image acquisition and blinded, central interpretation of CTA performance were conducted in concert with the Warfarin-Aspirin Symptomatic Intracranial Disease (WASID) trial. Measurements of the intracranial arterial diameter were obtained to derive stenosis values. Correlation with catheter angiography was used to assess CTA performance characteristics.ResultsCTA measurements of intracranial stenosis were obtained in 120 vessel segments, with angiographic correlation in 52. CTA was performed as a noninvasive study prior to conventional angiography. CTA stenoses of 50-99% or a flow gap were identified in 15 of 52 vessel segments, stenoses of &lt;50% in 5 of 52, and normal arterial diameters in 32 of 52 vessel segments. Based on the digital subtraction angiography (DSA) stenosis defined as 50-99%, the positive predictive value (PPV) of CTA was only 46.7% (95% CI 21.3-73.4) and the negative predictive value (NPV) was 73.0% (95% CI 55.9-86.2). For DSA stenosis defined as 70-99%, the PPV of CTA was 13.3% (95% CI 1.7-40.5) and the NPV was 83.8% (95% CI 68.0-93.8).ConclusionsCTA can accurately rule out the presence of severe stenosis due to intracranial atherosclerosis and may eliminate the need for angiography in many cases. Further prospective, blinded evaluation of CTA and optimization of cutpoints to predict angiographic disease will facilitate future trials of intracranial atherosclerosis

    Butyrate and Propionate Protect against Diet-Induced Obesity and Regulate Gut Hormones via Free Fatty Acid Receptor 3-Independent Mechanisms

    Get PDF
    Short-chain fatty acids (SCFAs), primarily acetate, propionate, and butyrate, are metabolites formed by gut microbiota from complex dietary carbohydrates. Butyrate and acetate were reported to protect against diet-induced obesity without causing hypophagia, while propionate was shown to reduce food intake. However, the underlying mechanisms for these effects are unclear. It was suggested that SCFAs may regulate gut hormones via their endogenous receptors Free fatty acid receptors 2 (FFAR2) and 3 (FFAR3), but direct evidence is lacking. We examined the effects of SCFA administration in mice, and show that butyrate, propionate, and acetate all protected against diet-induced obesity and insulin resistance. Butyrate and propionate, but not acetate, induce gut hormones and reduce food intake. As FFAR3 is the common receptor activated by butyrate and propionate, we examined these effects in FFAR3-deficient mice. The effects of butyrate and propionate on body weight and food intake are independent of FFAR3. In addition, FFAR3 plays a minor role in butyrate stimulation of Glucagon-like peptide-1, and is not required for butyrate- and propionate-dependent induction of Glucose-dependent insulinotropic peptide. Finally, FFAR3-deficient mice show normal body weight and glucose homeostasis. Stimulation of gut hormones and food intake inhibition by butyrate and propionate may represent a novel mechanism by which gut microbiota regulates host metabolism. These effects are largely intact in FFAR3-deficient mice, indicating additiona
    corecore