2,904 research outputs found
Obtaining a class of Type O pure radiation metrics with a cosmological constant, using invariant operators
Using the generalised invariant formalism we derive a class of conformally
flat spacetimes whose Ricci tensor has a pure radiation and a Ricci scalar
component. The method used is a development of the methods used earlier for
pure radiation spacetimes of Petrov types O and N respectively. In this paper
we demonstrate how to handle, in the generalised invariant formalism,
spacetimes with isotropy freedom and rich Killing vector structure. Once the
spacetimes have been constructed, it is straightforward to deduce their
Karlhede classification: the Karlhede algorithm terminates at the fourth
derivative order, and the spacetimes all have one degree of null isotropy and
three, four or five Killing vectors.Comment: 29 page
Type O pure radiation metrics with a cosmological constant
In this paper we complete the integration of the conformally flat pure
radiation spacetimes with a non-zero cosmological constant , and , by considering the case . This is a
further demonstration of the power and suitability of the generalised invariant
formalism (GIF) for spacetimes where only one null direction is picked out by
the Riemann tensor. For these spacetimes, the GIF picks out a second null
direction, (from the second derivative of the Riemann tensor) and once this
spinor has been identified the calculations are transferred to the simpler GHP
formalism, where the tetrad and metric are determined. The whole class of
conformally flat pure radiation spacetimes with a non-zero cosmological
constant (those found in this paper, together with those found earlier for the
case ) have a rich variety of subclasses with zero,
one, two, three, four or five Killing vectors
ESTUDIO COMPARATIVO DEL DESARROLLO DE LA ALFABETIZACIÓN EN POBLACIONES DE EDUCACIÓN PRIMARIA Y PREESCOLAR
A comparative study about early literacy of 33 children from elementary school and 27 children from kindergarden was carried out, applying the Instrumento de Observación de los Logros de la Lectoescritura Inicial (Escamilla, Andrade, Basurto y RuÃz, 1996). The purpose of the present work was to characterize the level of early literacy considering the knowledge of the language written in both groups. The groups were evaluated in the first two weeks of the month of September and of October of the school cycle 2011-2012. In the results it was observed that they were only significant differences in the identification of letters. The results are discussed in relation to the concept of early literacy
Recommended from our members
Concentrated Ambient Particles Alter Myocardial Blood Flow During Acute Ischemia in Conscious Canines
Background: Experimental and observational studies have demonstrated that short-term exposure to ambient particulate matter (PM) exacerbates myocardial ischemia. Objectives: We conducted this study to investigate the effects of concentrated ambient particles (CAPs) on myocardial blood flow during myocardial ischemia in chronically instrumented conscious canines. Methods: Eleven canines were instrumented with a balloon occluder around the left anterior descending coronary artery and catheters for determination of myocardial blood flow using fluorescent microspheres. Telemetric electrocardiographic and blood pressure monitoring was available for four of these animals. After recovery, we exposed animals by inhalation to 5 hr of either filtered air or CAPs (mean concentration ± SD, 349.0 ± 282.6 μg/m) in a crossover protocol. We determined myocardial blood flow during a 5-min coronary artery occlusion immediately after each exposure. Data were analyzed using mixed models for repeated measures. The primary analysis was based on four canines that completed the protocol. Results: CAPs exposure decreased total myocardial blood flow during coronary artery occlusion by 0.12 mL/min/g (p < 0.001) and was accompanied by a 13% (p < 0.001) increase in coronary vascular resistance. Rate–pressure product, an index of myocardial oxygen demand, did not differ by exposure (p = 0.90). CAPs effects on myocardial blood flow were significantly more pronounced in myocardium within or near the ischemic zone versus more remote myocardium (p interaction < 0.001). Conclusions: These results suggest that PM exacerbates myocardial ischemia by increased coronary vascular resistance and decreased myocardial perfusion. Further studies are needed to elucidate the mechanism of these effects
Lethal Concentration of Carbonate OF Ca as a Function of the Osmotic Potential of the Solution in Sunflower (Heliantusannuus L.)
In order to know the effect of CaCO3 in solution, sunflower seedlings cv. Victoria, an experiment was completely randomized, where five concentrations of calcium carbonate were evaluated to determine the lethal concentration (LC50), pH and EC of the solution under laboratory conditions in the Universidad Tecnologica de Tehuacan, to simulate of excess Ca++ in the soils or nutrient solution. The results indicate, the LC50 was 62.8 mg CaCO3 L-1, so maximum values for pH, EC and calcium absorption, They were achieved at concentrations of 120 and 160 mg L-1 of CaCO3. This work can be concluded, Sunflower can absorb the high levels of calcium and used as an alternative, for remediation of agricultural soils affected hard water and Ca++ salts
Mechanisms of Inhaled Fine Particulate Air Pollution–Induced Arterial Blood Pressure Changes
Background: Epidemiologic studies suggest a positive association between fine particulate matter and arterial blood pressure, but the results have been inconsistent. Objectives: We investigated the effect of ambient particles on systemic hemodynamics during a 5-hr exposure to concentrated ambient air particles (CAPs) or filtered air (FA) in conscious canines. Methods: Thirteen dogs were repeatedly exposed via permanent tracheostomy to CAPs (358.1 ± 306.7 μg/m, mean ± SD) or FA in a crossover protocol (55 CAPs days, 63 FA days). Femoral artery blood pressure was monitored continuously via implanted telemetry devices. We measured baroreceptor reflex sensitivity before and after exposure in a subset of these experiments (n = 10 dogs, 19 CAPs days, 20 FA days). In additional experiments, we administered α-adrenergic blockade before exposure (n = 8 dogs, 16 CAPs days, 15 FA days). Blood pressure, heart rate, rate–pressure product, and baroreceptor reflex sensitivity responses were compared using linear mixed-effects models. Results: CAPs exposure increased systolic blood pressure (2.7 ± 1.0 mmHg, p = 0.006), diastolic blood pressure (4.1 ± 0.8 mmHg; p < 0.001), mean arterial pressure (3.7 ± 0.8 mmHg; p < 0.001), heart rate (1.6 ± 0.5 bpm; p < 0.001), and rate–pressure product (539 ± 110 bpm × mmHg; p < 0.001), and decreased pulse pressure (−1.7 ± 0.7 mmHg, p = 0.02). These changes were accompanied by a 20 ± 6 msec/mmHg (p = 0.005) increase in baroreceptor reflex sensitivity after CAPs versus FA. After α-adrenergic blockade, responses to CAPs and FA no longer differed significantly. Conclusions: Controlled exposure to ambient particles elevates arterial blood pressure. Increased peripheral vascular resistance may mediate these changes, whereas increased baroreceptor reflex sensitivity may compensate for particle-induced alterations in blood pressure
Ultrafast evanescent heat transfer across solid interfaces via hyperbolic phonon polaritons in hexagonal boron nitride
The efficiency of phonon-mediated heat transport is limited by the intrinsic
atomistic properties of materials, seemingly providing an upper limit to heat
transfer in materials and across their interfaces. The typical speeds of
conductive transport, which are inherently limited by the chemical bonds and
atomic masses, dictate how quickly heat will move in solids. Given that
phonon-polaritons, or coupled phonon-photon modes, can propagate at speeds
approaching 1 percent of the speed of light - orders of magnitude faster than
transport within a pure diffusive phonon conductor - we demonstrate that
volume-confined, hyperbolic phonon-polariton(HPhP) modes supported by many
biaxial polar crystals can couple energy across solid-solid interfaces at an
order of magnitude higher rates than phonon-phonon conduction alone. Using
pump-probe thermoreflectance with a mid-infrared, tunable, probe pulse with
sub-picosecond resolution, we demonstrate remote and spectrally selective
excitation of the HPhP modes in hexagonal boron nitride in response to
radiative heating from a thermally emitting gold source. Our work demonstrates
a new avenue for interfacial heat transfer based on broadband radiative
coupling from a hot spot in a gold film to hBN HPhPs, independent of the broad
spectral mismatch between the pump(visible) and probe(mid-IR) pulses employed.
This methodology can be used to bypass the intrinsically limiting phonon-phonon
conductive pathway, thus providing an alternative means of heat transfer across
interfaces. Further, our time-resolved measurements of the temperature changes
of the HPhP modes in hBN show that through polaritonic coupling, a material can
transfer heat across and away from an interface at rates orders of magnitude
faster than diffusive phonon speeds intrinsic to the material, thus
demonstrating a pronounced thermal transport enhancement in hBN via
phonon-polariton coupling
Validating a Plasma Momentum Flux Sensor to an Inverted Pendulum Thrust Stand
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76451/1/AIAA-35706-298.pd
Measurement of total and differential cross sections of neutrino and antineutrino coherent pi(+/-) production on carbon
Neutrino induced coherent charged pion production on nuclei, (nu) over bar (mu)A -\u3e mu(+/-)pi(-/+) A, is a rare inelastic interaction in which the four-momentum squared transferred to the nucleus is nearly zero, leaving it intact. We identify such events in the scintillator of MINERvA by reconstructing vertical bar t vertical bar from the final state pion and muon momenta and by removing events with evidence of energetic nuclear recoil or production of other final state particles. We measure the total neutrino and antineutrino cross sections as a function of neutrino energy between 2 and 20 GeV and measure flux integrated differential cross sections as a function of Q(2), E-pi, and theta(pi). The Q(2) dependence and equality of the neutrino and antineutrino cross sections at finite Q(2) provide a confirmation of Adler\u27s partial conservation of axial current hypothesis
- …