111 research outputs found

    Merging transcriptomics and metabolomics - advances in breast cancer profiling

    Get PDF
    Background Combining gene expression microarrays and high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) of the same tissue samples enables comparison of the transcriptional and metabolic profiles of breast cancer. The aim of this study was to explore the potential of combining these two different types of information. Methods Breast cancer tissue from 46 patients was analyzed by HR MAS MRS followed by gene expression microarrays. Two strategies were used to combine the gene expression and metabolic data; first using multivariate analyses to identify different groups based on gene expression and metabolic data; second correlating levels of specific metabolites to transcripts to suggest new hypotheses of connections between metabolite levels and the underlying biological processes. A parallel study was designed to address experimental issues of combining microarrays and HR MAS MRS. Results In the first strategy, using the microarray data and previously reported molecular classification methods, the majority of samples were classified as luminal A. Three subgroups of luminal A tumors were identified based on hierarchical clustering of the HR MAS MR spectra. The samples in one of the subgroups, designated A2, showed significantly lower glucose and higher alanine levels than the other luminal A samples, suggesting a higher glycolytic activity in these tumors. This group was also enriched for genes annotated with Gene Ontology (GO) terms related to cell cycle and DNA repair. In the second strategy, the correlations between concentrations of myo-inositol, glycine, taurine, glycerophosphocholine, phosphocholine, choline and creatine and all transcripts in the filtered microarray data were investigated. GO-terms related to the extracellular matrix were enriched among the genes that correlated the most to myo-inositol and taurine, while cell cycle related GO-terms were enriched for the genes that correlated the most to choline. Additionally, a subset of transcripts was identified to have slightly altered expression after HR MAS MRS and was therefore removed from all other analyses. Conclusions Combining transcriptional and metabolic data from the same breast carcinoma sample is feasible and may contribute to a more refined subclassification of breast cancers as well as reveal relations between metabolic and transcriptional levels. See Commentary: http://www.biomedcentral.com/1741-7015/8/7

    On the Integrand-Reduction Method for Two-Loop Scattering Amplitudes

    Full text link
    We propose a first implementation of the integrand-reduction method for two-loop scattering amplitudes. We show that the residues of the amplitudes on multi-particle cuts are polynomials in the irreducible scalar products involving the loop momenta, and that the reduction of the amplitudes in terms of master integrals can be realized through polynomial fitting of the integrand, without any apriori knowledge of the integral basis. We discuss how the polynomial shapes of the residues determine the basis of master integrals appearing in the final result. We present a four-dimensional constructive algorithm that we apply to planar and non-planar contributions to the 4- and 5-point MHV amplitudes in N=4 SYM. The technique hereby discussed extends the well-established analogous method holding for one-loop amplitudes, and can be considered a preliminary study towards the systematic reduction at the integrand-level of two-loop amplitudes in any gauge theory, suitable for their automated semianalytic evaluation.Comment: 26 pages, 11 figure

    An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes

    Get PDF
    We investigate the mechanism of a decadal-scale weakening shift in the strength of the subpolar gyre (SPG) that is found in one among three last millennium simulations with a state-of-the-art Earth system model. The SPG shift triggers multicentennial anomalies in the North Atlantic climate driven by long-lasting internal feedbacks relating anomalous oceanic and atmospheric circulation, sea ice extent, and upper-ocean salinity in the Labrador Sea. Yet changes throughout or after the shift are not associated with a persistent weakening of the Atlantic Meridional Overturning Circulation or shifts in the North Atlantic Oscillation. The anomalous climate state of the North Atlantic simulated after the shift agrees well with climate reconstructions from within the area, which describe a transition between a stronger and weaker SPG during the relatively warm medieval climate and the cold Little Ice Age respectively. However, model and data differ in the timing of the onset. The simulated SPG shift is caused by a rapid increase in the freshwater export from the Arctic and associated freshening in the upper Labrador Sea. Such freshwater anomaly relates to prominent thickening of the Arctic sea ice, following the cluster of relatively small-magnitude volcanic eruptions by 1600 CE. Sensitivity experiments without volcanic forcing can nonetheless produce similar abrupt events; a necessary causal link between the volcanic cluster and the SPG shift can therefore be excluded. Instead, preconditioning by internal variability explains discrepancies in the timing between the simulated SPG shift and the reconstructed estimates for the Little Ice Age onset

    Transcriptomics and adaptive genomics of the asymptomatic bacteriuria Escherichia coli strain 83972

    Get PDF
    Escherichia coli strains are the major cause of urinary tract infections in humans. Such strains can be divided into virulent, UPEC strains causing symptomatic infections, and asymptomatic, commensal-like strains causing asymptomatic bacteriuria, ABU. The best-characterized ABU strain is strain 83972. Global gene expression profiling of strain 83972 has been carried out under seven different sets of environmental conditions ranging from laboratory minimal medium to human bladders. The data reveal highly specific gene expression responses to different conditions. A number of potential fitness factors for the human urinary tract could be identified. Also, presence/absence data of the gene expression was used as an adaptive genomics tool to model the gene pool of 83972 using primarily UPEC strain CFT073 as a scaffold. In our analysis, 96% of the transcripts filtered present in strain 83972 can be found in CFT073, and genes on six of the seven pathogenicity islands were expressed in 83972. Despite the very different patient symptom profiles, the two strains seem to be very similar. Genes expressed in CFT073 but not in 83972 were identified and can be considered as virulence factor candidates. Strain 83972 is a deconstructed pathogen rather than a commensal strain that has acquired fitness properties

    Neurobiological degeneracy and affordance perception support functional intra-individual variability of inter-limb coordination during ice climbing

    Get PDF
    This study investigated the functional intra-individual movement variability of ice climbers differing in skill level to understand how icefall properties were used by participants as affordances to adapt inter-limb coordination patterns during performance. Seven expert climbers and seven beginners were observed as they climbed a 30 m icefall. Movement and positioning of the left and right hand ice tools, crampons and the climber's pelvis over the first 20 m of the climb were recorded and digitized using video footage from a camera (25 Hz) located perpendicular to the plane of the icefall. Inter-limb coordination, frequency and types of action and vertical axis pelvis displacement exhibited by each climber were analysed for the first five minutes of ascent. Participant perception of climbing affordances was assessed through: (i) calculating the ratio between exploratory movements and performed actions, and (ii), identifying, by self-confrontation interviews, the perceptual variables of environmental properties, which were significant to climbers for their actions. Data revealed that experts used a wider range of upper and lower limb coordination patterns, resulting in the emergence of different types of action and fewer exploratory movements, suggesting that effective holes in the icefall provided affordances to regulate performance. In contrast, beginners displayed lower levels of functional intra-individual variability of motor organization, due to repetitive swinging of ice tools and kicking of crampons to achieve and maintain a deep anchorage, suggesting lack of perceptual attunement and calibration to environmental properties to support climbing performanc

    Evolution of the eukaryotic ARP2/3 activators of the WASP family: WASP, WAVE, WASH, and WHAMM, and the proposed new family members WAWH and WAML

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>WASP family proteins stimulate the actin-nucleating activity of the ARP2/3 complex. They include members of the well-known WASP and WAVE/Scar proteins, and the recently identified WASH and WHAMM proteins. WASP family proteins contain family specific N-terminal domains followed by proline-rich regions and C-terminal VCA domains that harbour the ARP2/3-activating regions.</p> <p>Results</p> <p>To reveal the evolution of ARP2/3 activation by WASP family proteins we performed a "holistic" analysis by manually assembling and annotating all homologs in most of the eukaryotic genomes available. We have identified two new families: the WAML proteins (WASP and MIM like), which combine the membrane-deforming and actin bundling functions of the IMD domains with the ARP2/3-activating VCA regions, and the WAWH protein (WASP without WH1 domain) that have been identified in amoebae, Apusozoa, and the anole lizard. Surprisingly, with one exception we did not identify any alternative splice forms for WASP family proteins, which is in strong contrast to other actin-binding proteins like Ena/VASP, MIM, or NHS proteins that share domains with WASP proteins.</p> <p>Conclusions</p> <p>Our analysis showed that the last common ancestor of the eukaryotes must have contained a homolog of WASP, WAVE, and WASH. Specific families have subsequently been lost in many taxa like the WASPs in plants, algae, Stramenopiles, and Euglenozoa, and the WASH proteins in fungi. The WHAMM proteins are metazoa specific and have most probably been invented by the Eumetazoa. The diversity of WASP family proteins has strongly been increased by many species- and taxon-specific gene duplications and multimerisations. All data is freely accessible via <url>http://www.cymobase.org</url>.</p

    Dust polarized emission observations of NGC 6334: BISTRO reveals the details of the complex but organized magnetic field structure of the high-mass star-forming hub-filament network

    Get PDF
    Context. Molecular filaments and hubs have received special attention recently thanks to new studies showing their key role in star formation. While the (column) density and velocity structures of both filaments and hubs have been carefully studied, their magnetic field (B-field) properties have yet to be characterized. Consequently, the role of B-fields in the formation and evolution of hub-filament systems is not well constrained. Aims. We aim to understand the role of the B-field and its interplay with turbulence and gravity in the dynamical evolution of the NGC 6334 filament network that harbours cluster-forming hubs and high-mass star formation. Methods. We present new observations of the dust polarized emission at 850 μm toward the 2 pc × 10 pc map of NGC 6334 at a spatial resolution of 0.09 pc obtained with the James Clerk Maxwell Telescope (JCMT) as part of the B-field In STar-forming Region Observations (BISTRO) survey. We study the distribution and dispersion of the polarized intensity (PI), the polarization fraction (PF), and the plane-of-The-sky B-field angle (χB_POS) toward the whole region, along the 10 pc-long ridge and along the sub-filaments connected to the ridge and the hubs. We derived the power spectra of the intensity and χBPOS along the ridge crest and compared them with the results obtained from simulated filaments. Results. The observations span 3 orders of magnitude in Stokes I and PI and 2 orders of magnitude in PF (from 0.2 to 20%). A large scatter in PI and PF is observed for a given value of I. Our analyses show a complex B-field structure when observed over the whole region ( 10 pc); however, at smaller scales (1 pc), χBPOS varies coherently along the crests of the filament network. The observed power spectrum of χBPOS can be well represented with a power law function with a slope of-1.33 ± 0.23, which is 20% shallower than that of I. We find that this result is compatible with the properties of simulated filaments and may indicate the physical processes at play in the formation and evolution of star-forming filaments. Along the sub-filaments, χBPOS rotates frombeing mostly perpendicular or randomly oriented with respect to the crests to mostly parallel as the sub-filaments merge with the ridge and hubs. This variation of the B-field structure along the sub-filaments may be tracing local velocity flows of infalling matter in the ridge and hubs. Our analysis also suggests a variation in the energy balance along the crests of these sub-filaments, from magnetically critical or supercritical at their far ends to magnetically subcritical near the ridge and hubs. We also detect an increase in PF toward the high-column density (NH2 â 1023 cm-2) star cluster-forming hubs. These latter large PF values may be explained by the increase in grain alignment efficiency due to stellar radiation from the newborn stars, combined with an ordered B-field structure. Conclusions. These observational results reveal for the first time the characteristics of the small-scale (down to 0.1 pc) B-field structure of a 10 pc-long hub-filament system. Our analyses show variations in the polarization properties along the sub-filaments that may be tracing the evolution of their physical properties during their interaction with the ridge and hubs. We also detect an impact of feedback from young high-mass stars on the local B-field structure and the polarization properties, which could put constraints on possible models for dust grain alignment and provide important hints as to the interplay between the star formation activity and interstellar B-fields

    The JCMT BISTRO-2 Survey: Magnetic Fields of the Massive DR21 Filament

    Get PDF
    We present 850 μm dust polarization observations of the massive DR21 filament from the B-fields In STar-forming Region Observations (BISTRO) survey, using the POL-2 polarimeter and the SCUBA-2 camera on the James Clerk Maxwell Telescope. We detect ordered magnetic fields perpendicular to the parsec-scale ridge of the DR21 main filament. In the subfilaments, the magnetic fields are mainly parallel to the filamentary structures and smoothly connect to the magnetic fields of the main filament. We compare the POL-2 and Planck dust polarization observations to study the magnetic field structures of the DR21 filament on 0.1-10 pc scales. The magnetic fields revealed in the Planck data are well-aligned with those of the POL-2 data, indicating a smooth variation of magnetic fields from large to small scales. The plane-of-sky magnetic field strengths derived from angular dispersion functions of dust polarization are 0.6-1.0 mG in the DR21 filament and ∼0.1 mG in the surrounding ambient gas. The mass-to-flux ratios are found to be magnetically supercritical in the filament and slightly subcritical to nearly critical in the ambient gas. The alignment between column density structures and magnetic fields changes from random alignment in the low-density ambient gas probed by Planck to mostly perpendicular in the high-density main filament probed by James Clerk Maxwell Telescope. The magnetic field structures of the DR21 filament are in agreement with MHD simulations of a strongly magnetized medium, suggesting that magnetic fields play an important role in shaping the DR21 main filament and subfilaments

    Polo kinase recruitment via the constitutive centromere-associated network at the kinetochore elevates centromeric RNA

    Get PDF
    The kinetochore, a multi-protein complex assembled on centromeres, is essential to segregate chromosomes during cell division. Deficiencies in kinetochore function can lead to chromosomal instability and aneuploidy-a hallmark of cancer cells. Kinetochore function is controlled by recruitment of regulatory proteins, many of which have been documented, however their function often remains uncharacterized and many are yet to be identified. To identify candidates of kinetochore regulation we used a proteome-wide protein association strategy in budding yeast and detected many proteins that are involved in post-translational modifications such as kinases, phosphatases and histone modifiers. We focused on the Polo-like kinase, Cdc5, and interrogated which cellular components were sensitive to constitutive Cdc5 localization. The kinetochore is particularly sensitive to constitutive Cdc5 kinase activity. Targeting Cdc5 to different kinetochore subcomplexes produced diverse phenotypes, consistent with multiple distinct functions at the kinetochore. We show that targeting Cdc5 to the inner kinetochore, the constitutive centromere-associated network (CCAN), increases the levels of centromeric RNA via an SPT4 dependent mechanism

    The TOP-SCOPE Survey of Planck Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17

    Get PDF
    This is the final version. Available from American Astronomical Society via the DOI in this record.The low dust temperatures (<14 K) of Planck Galactic cold clumps (PGCCs) make them ideal targets to probe the initial conditions and very early phase of star formation. "TOP-SCOPE" is a joint survey program targeting ∼2000 PGCCs in J = 1-0 transitions of CO isotopologues and ∼1000 PGCCs in 850 μm continuum emission. The objective of the "TOP-SCOPE" survey and the joint surveys (SMT 10 m, KVN 21 m, and NRO 45 m) is to statistically study the initial conditions occurring during star formation and the evolution of molecular clouds, across a wide range of environments. The observations, data analysis, and example science cases for these surveys are introduced with an exemplar source, PGCC G26.53+0.17 (G26), which is a filamentary infrared dark cloud (IRDC). The total mass, length, and mean line mass (M/L) of the G26 filament are ∼6200 M, ∼12 pc, and ∼500 Mpc-1, respectively. Ten massive clumps, including eight starless ones, are found along the filament. The most massive clump as a whole may still be in global collapse, while its denser part seems to be undergoing expansion owing to outflow feedback. The fragmentation in the G26 filament from cloud scale to clump scale is in agreement with gravitational fragmentation of an isothermal, nonmagnetized, and turbulent supported cylinder. A bimodal behavior in dust emissivity spectral index (β) distribution is found in G26, suggesting grain growth along the filament. The G26 filament may be formed owing to large-scale compression flows evidenced by the temperature and velocity gradients across its natal cloud.German Research FoundationJoint Research Fund in AstronomyTop Talents Program of Yunnan ProvinceAcademy of FinlandMinistry of Education, Science, and TechnologyNational Research Foundation of KoreaChinese Academy of SciencesMinistry of Science and Technology of TaiwanEuropean Research Counci
    corecore