246 research outputs found

    Cumulative signal transmission in nonlinear reaction-diffusion networks

    Get PDF
    Quantifying signal transmission in biochemical systems is key to uncover the mechanisms that cells use to control their responses to environmental stimuli. In this work we use the time-integral of chemical species as a measure of a network’s ability to cumulatively transmit signals encoded in spatiotemporal concentrations. We identify a class of nonlinear reaction-diffusion networks in which the time-integrals of some species can be computed analytically. The derived time-integrals do not require knowledge of the solution of the reaction-diffusion equation, and we provide a simple graphical test to check if a given network belongs to the proposed class. The formulae for the time-integrals reveal how the kinetic parameters shape signal transmission in a network under spatiotemporal stimuli. We use these to show that a canonical complex-formation mechanism behaves as a spatial low-pass filter, the bandwidth of which is inversely proportional to the diffusion length of the ligand

    Analysis of metastases rates during follow-up after endoscopic resection of early "high-risk" esophageal adenocarcinoma

    Get PDF
    BACKGROUND AND AIMS: After endoscopic resection (ER) of early esophageal adenocarcinoma (EAC), the optimal management of patients with high-risk histological features for lymph node metastases (LNM) (i.e., submucosal invasion, poor differentiation grade, or lymphovascular invasion (LVI)), remains unclear. We aimed to evaluate outcomes of endoscopic follow-up after ER for high-risk EAC. METHODS: For this retrospective cohort study, data was collected from all Dutch patients managed with endoscopic follow-up (endoscopy, endoscopic ultrasound) after ER for high-risk EAC between 2008 and 2019. We distinguished 3 groups: intramucosal cancers with high-risk features, submucosal cancers with low-risk features, and submucosal cancers with high-risk features. Primary outcome was the annual risk for metastases during follow-up, stratified for baseline histology. RESULTS: A total of 120 patients met the selection criteria. Median FU was 29 months (IQR 15-48). Metastases were observed in 5/25 (annual risk 6.9%; 95% CI 3.0-15), 1/55 (annual risk 0.7%; 95% CI 0-4.0) and 3/40 (annual risk 3.0%; 95% CI 0-7.0) in high-risk intramucosal, low-risk submucosal, and high-risk submucosal cancers, respectively. CONCLUSIONS: Whereas the annual metastasis rate for high-risk submucosal EAC (3.0%) was somewhat lower than expected in comparison with previous reported percentages, the annual metastasis rate of 6.9% for high-risk intramucosal EAC is new and worrisome. This calls for further prospective studies and suggests that strict follow-up of this small subgroup is warranted until prospective data are available

    Perception of Biological Motion in Schizophrenia and Healthy Individuals: A Behavioral and fMRI Study

    Get PDF
    Background: Anomalous visual perception is a common feature of schizophrenia plausibly associated with impaired social cognition that, in turn, could affect social behavior. Past research suggests impairment in biological motion perception in schizophrenia. Behavioral and functional magnetic resonance imaging (fMRI) experiments were conducted to verify the existence of this impairment, to clarify its perceptual basis, and to identify accompanying neural concomitants of those deficits. Methodology/Findings: In Experiment 1, we measured ability to detect biological motion portrayed by point-light animations embedded within masking noise. Experiment 2 measured discrimination accuracy for pairs of point-light biological motion sequences differing in the degree of perturbation of the kinematics portrayed in those sequences. Experiment 3 measured BOLD signals using event-related fMRI during a biological motion categorization task. Compared to healthy individuals, schizophrenia patients performed significantly worse on both the detection (Experiment 1) and discrimination (Experiment 2) tasks. Consistent with the behavioral results, the fMRI study revealed that healthy individuals exhibited strong activation to biological motion, but not to scrambled motion in the posterior portion of the superior temporal sulcus (STSp). Interestingly, strong STSp activation was also observed for scrambled or partially scrambled motion when the healthy participants perceived it as normal biological motion. On the other hand, STSp activation in schizophreni

    Hepatopulmonary syndrome in patients with chronic liver disease: role of pulse oximetry

    Get PDF
    BACKGROUND: Hepatopulmonary syndrome (HPS) is a rare complication of liver diseases of different etiologies and may indicate a poor prognosis. Therefore, a simple non-invasive screening method to detect HPS would be highly desirable. In this study pulse oximetry was evaluated to identify patients with HPS. METHODS: In 316 consecutive patients with liver cirrhosis (n = 245), chronic hepatitis (n = 69) or non-cirrhotic portal hypertension (n = 2) arterial oxygen saturation (SaO(2)) was determined using a pulse oximeter. In patients with SaO(2 )≤92% in supine position and/or a decrease of ≥4% after change from supine to upright position further diagnostic procedures were performed, including contrast-enhanced echocardiography and perfusion lung scan. RESULTS: Seventeen patients (5.4%) had a pathological SaO(2). Four patients (1.3%) had HPS. HPS patients had a significant lower mean SaO(2 )in supine (89.7%, SD 5.4 vs. 96.0%, SD 2.3; p = 0.003) and upright position (84.3%, SD 5.0 vs. 96.0%, SD 2.4; p = 0.001) and had a lower mean PaO(2 )(56.2 mm Hg, SD 15.2 vs. 71.2 mm Hg, SD 20.2; p = 0.02) as compared to patients without HPS. The mean ΔSaO(2 )(difference between supine and upright position) was 5.50 (SD 7) in HPS patients compared to non-HPS patients who showed no change (p = 0.001). There was a strong correlation between shunt volume and the SaO(2 )values (R = -0.94). CONCLUSION: Arterial SaO(2 )determination in supine and upright position is a useful non-invasive screening test for HPS and correlates well with the intrapulmonary shunt volume

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Swarming Behavior in Plant Roots

    Get PDF
    Interactions between individuals that are guided by simple rules can generate swarming behavior. Swarming behavior has been observed in many groups of organisms, including humans, and recent research has revealed that plants also demonstrate social behavior based on mutual interaction with other individuals. However, this behavior has not previously been analyzed in the context of swarming. Here, we show that roots can be influenced by their neighbors to induce a tendency to align the directions of their growth. In the apparently noisy patterns formed by growing roots, episodic alignments are observed as the roots grow close to each other. These events are incompatible with the statistics of purely random growth. We present experimental results and a theoretical model that describes the growth of maize roots in terms of swarming

    The Induction of MicroRNA Targeting IRS-1 Is Involved in the Development of Insulin Resistance under Conditions of Mitochondrial Dysfunction in Hepatocytes

    Get PDF
    BACKGROUND: Mitochondrial dysfunction induces insulin resistance in myocytes via a reduction of insulin receptor substrate-1 (IRS-1) expression. However, the effect of mitochondrial dysfunction on insulin sensitivity is not understood well in hepatocytes. Although research has implicated the translational repression of target genes by endogenous non-coding microRNAs (miRNA) in the pathogenesis of various diseases, the identity and role of the miRNAs that are involved in the development of insulin resistance also remain largely unknown. METHODOLOGY: To determine whether mitochondrial dysfunction induced by genetic or metabolic inhibition causes insulin resistance in hepatocytes, we analyzed the expression and insulin-stimulated phosphorylation of insulin signaling intermediates in SK-Hep1 hepatocytes. We used qRT-PCR to measure cellular levels of selected miRNAs that are thought to target IRS-1 3' untranslated regions (3'UTR). Using overexpression of miR-126, we determined whether IRS-1-targeting miRNA causes insulin resistance in hepatocytes. PRINCIPAL FINDINGS: Mitochondrial dysfunction resulting from genetic (mitochondrial DNA depletion) or metabolic inhibition (Rotenone or Antimycin A) induced insulin resistance in hepatocytes via a reduction in the expression of IRS-1 protein. In addition, we observed a significant up-regulation of several miRNAs presumed to target IRS-1 3'UTR in hepatocytes with mitochondrial dysfunction. Using reporter gene assay we confirmed that miR-126 directly targeted to IRS-1 3'UTR. Furthermore, the overexpression of miR-126 in hepatocytes caused a substantial reduction in IRS-1 protein expression, and a consequent impairment in insulin signaling. CONCLUSIONS/SIGNIFICANCE: We demonstrated that miR-126 was actively involved in the development of insulin resistance induced by mitochondrial dysfunction. These data provide novel insights into the molecular basis of insulin resistance, and implicate miRNA in the development of metabolic disease

    Subsampling effects in neuronal avalanche distributions recorded in vivo

    Get PDF
    Background Many systems in nature are characterized by complex behaviour where large cascades of events, or avalanches, unpredictably alternate with periods of little activity. Snow avalanches are an example. Often the size distribution f(s) of a system's avalanches follows a power law, and the branching parameter sigma, the average number of events triggered by a single preceding event, is unity. A power law for f(s), and sigma=1, are hallmark features of self-organized critical (SOC) systems, and both have been found for neuronal activity in vitro. Therefore, and since SOC systems and neuronal activity both show large variability, long-term stability and memory capabilities, SOC has been proposed to govern neuronal dynamics in vivo. Testing this hypothesis is difficult because neuronal activity is spatially or temporally subsampled, while theories of SOC systems assume full sampling. To close this gap, we investigated how subsampling affects f(s) and sigma by imposing subsampling on three different SOC models. We then compared f(s) and sigma of the subsampled models with those of multielectrode local field potential (LFP) activity recorded in three macaque monkeys performing a short term memory task. Results Neither the LFP nor the subsampled SOC models showed a power law for f(s). Both, f(s) and sigma, depended sensitively on the subsampling geometry and the dynamics of the model. Only one of the SOC models, the Abelian Sandpile Model, exhibited f(s) and sigma similar to those calculated from LFP activity. Conclusions Since subsampling can prevent the observation of the characteristic power law and sigma in SOC systems, misclassifications of critical systems as sub- or supercritical are possible. Nevertheless, the system specific scaling of f(s) and sigma under subsampling conditions may prove useful to select physiologically motivated models of brain function. Models that better reproduce f(s) and sigma calculated from the physiological recordings may be selected over alternatives

    Early maternal deprivation affects dentate gyrus structure and emotional learning in adult female rats

    Get PDF
    Rationale: Stress elicits functional and structural changes in the hippocampus. Early life stress is one of the major risk factors for stress-related pathologies like depression. Patients suffering from depression show a reduced hippocampal volume, and in women, this occurs more often when depression is preceded by childhood trauma. However, the underlying mechanisms that account for a reduced hippocampal volume are unknown. Objective: We examined the effects of maternal absence on structure and function of the hippocampus in female offspring. Methods: We studied whether 24 h of maternal deprivation (MD) on postnatal day 3 altered adult neurogenesis, individual neuronal morphology and dentate gyrus (DG) structure in young adult female rats. In addition, functional alterations were addressed by studying synaptic plasticity in vitro, and spatial as well as emotional learning was tested. Results: Adult females that were subjected to MD revealed significant reductions in DG granule cell number and density. In addition, DG neurons were altered in their dendritic arrangement. No effects on the rate of adult neurogenesis were found. Furthermore, MD did not alter synaptic plasticity in vitro, neither under normal nor high-stress conditions. In addition, spatial learning and contextual fear conditioning were comparable between control and MD animals. However, MD animals showed an improved amygdala-dependent fear memory. Conclusion: Although early life stress exposure did not impair hippocampus-dependent functioning in female offspring, it irreversibly affected DG structure by reducing cell numbers. This may be relevant for the reduced hippocampal volume observed in depression and the increased vulnerability of women to develop depression
    corecore