46 research outputs found

    Abundance ratios of volatile vs. refractory elements in planet-harbouring stars: hints of pollution?

    Full text link
    We present the [X/H] trends as function of the elemental condensation temperature Tc in 88 planet host stars and in a volume-limited comparison sample of 33 dwarfs without detected planetary companions. We gathered homogeneous abundance results for many volatile and refractory elements spanning a wide range of Tc, from a few dozens to several hundreds kelvin. We investigate possible anomalous trends of planet hosts with respect to comparison sample stars in order to detect evidence of possible pollution events. No significant differences are found in the behaviour of stars with and without planets. This result is in agreement with a ``primordial'' origin of the metal excess in planet host stars. However, a subgroup of 5 planet host and 1 comparison sample stars stands out for having particularly high [X/H] vs. Tc slopes.Comment: 10 pages, 7 figures, accepted for publication in A&A. Figures with higher resolution are available at www.iac.es/proyect/abuntes

    Kinematics of planet-host stars and their relation with dynamical streams in the solar neighbourhood

    Get PDF
    We present a detailed study on the kinematics of metal-rich stars with and without planets, and their relation with the Hyades, Sirius and Hercules dynamical streams in the solar neighbourhood. Accurate kinematics have been derived for all the stars belonging to the CORALIE planet search survey. We used precise radial velocity measurements and CCF parameters from the CORALIE database, and parallaxes, photometry and proper motions from the HIPPARCOS and Tycho-2 catalogues. The location of stars with planets in the thin or thick discs has been analysed using both kinematic and chemical constraints. We compare the kinematic behaviour of known planet-host stars to the remaining targets belonging to the volume-limited sample, in particular to its metal-rich population. The high average metallicity of the Hyades stream is confirmed. The planet-host targets show a kinematic behaviour similar to that of the metal-rich comparison subsample, rather than to that of the comparison sample as a whole, thus supporting a primordial origin for the metal excess observed in stars with known planetary companions. According to the scenarios proposed as an explanation for the dynamical streams, systems with giant planets could have formed more easily in metal-rich inner Galactic regions and then been brought into the solar neighbourhood by dynamical streams.Comment: 14 pages, 12 figures, accepted for publication in A&A (28 August 2006

    Chemical abundances for the transiting planet host stars OGLE-TR-10, 56, 111, 113, 132 and TrES-1. Abundances in different galactic populations

    Get PDF
    We used the UVES spectrograph (VLT-UT2 telescope) to obtain high-resolution spectra of 6 stars hosting transiting planets, namely for OGLE-TR-10, 56, 111, 113, 132 and TrES-1. The spectra are now used to derive and discuss the chemical abundances for C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn. Abundances were derived in LTE, using 1-D plane-parallel Kurucz model atmospheres. For S, Zn and Cu we used a spectral synthesis procedure, while for the remaining cases the abundances were derived from measurements of line-equivalent widths. The resulting abundances are compared with those found for stars in the solar neighborhood. Distances and galactic coordinates are estimated for the stars. We conclude that besides being particularly metal-rich, with small possible exceptions OGLE-TR-10, 56, 111, 113, 132 and TrES-1 are chemically undistinguishable from the field (thin disk) stars regarding their [X/Fe] abundances. This is particularly relevant for the most distant of the targets, located at up to ~2 Kpc from the Sun. We also did not find any correlation between the abundances and the condensation temperature of the elements, an evidence that strong accretion of planetary-like material, tentatively connected to planetary migration, did not occur.Comment: Accepted for publication in Astronomy & Astrophysics (June 2006

    Abundance ratios of volatile vs. refractory elements: hints of pollutions?

    Full text link
    We present the abundance ratios [X/H] of a large set of chemical species with condensation temperatures from 75 to 1600 K in an almost complete set of 105 planet-host stars and in a volume-limited comparison sample of 88 stars without any known planets. The large range of different Tc covered by all the analysed elements allows us to investigate possible anomalous trends of [X/H] vs. Tc in targets with planets with respect to comparison sample stars. This can give important hints for the detection of pollution events and for the understanding of the relative contribution of the differential accretion to the average metallicity excess found in planet host stars.Comment: 3 pages, 2 figures, Proceedings of Haute Provence Observatory Colloquium '10th anniversary of 51Peg-b: status of and prospects for hot Jupiter studies', 22-26 Aug 200

    Galactic Evolution of Nitrogen

    Full text link
    We present detailed spectroscopic analysis of nitrogen abundances in 31 unevolved metal-poor stars analysed by spectral synthesis of the near-UV NH band at 3360 A observed at high resolution with various telescopes. We found that [N/Fe] scales with that of iron in the metallicity range -3.1 < [Fe/H] <0 with the slope 0.01+-0.02. Furthermore, we derive uniform and accurate (N/O) ratios using oxygen abundances from near-UV OH lines obtained in our previous studies. We find that a primary component of nitrogen is required to explain the observations. The NH lines are discovered in the VLT/UVES spectra of the very metal-poor subdwarfs G64-12 and LP815-43 indicating that these stars are N rich. The results are compared with theoretical models and observations of extragalactic HII regions and Damped Lyα\alpha systems. This is the first direct comparison of the (N/O) ratios in these objects with those in Galactic stars.Comment: 10 pages, 6 figures, to appear in Astronomy and Astrophysic

    C, S, Zn and Cu abundances in planet-harbouring stars

    Full text link
    We present a detailed and uniform study of C, S, Zn and Cu abundances in a large set of planet host stars, as well as in a homogeneous comparison sample of solar-type dwarfs with no known planetary-mass companions. Carbon abundances were derived by {EW} measurement of two C I optical lines, while spectral syntheses were performed for S, Zn and Cu. We investigated possible differences in the behaviours of the volatiles C, S and Zn and in the refractory Cu in targets with and without known planets in order to check possible anomalies due to the presence of planets. We found that the abundance distributions in stars with exoplanets are the high [Fe/H] extensions of the trends traced by the comparison sample. All volatile elements we studied show [X/Fe] trends decreasing with [Fe/H] in the metallicity range -0.8<[Fe/H]<0.5, with significantly negative slopes of -0.39+-0.04 and -0.35+-0.04 for C and S, respectively. A comparison of our abundances with those available in the literature shows good agreement in most cases.Comment: 28 pages, 13 figures, accepted for publication in A&

    On the age heterogeneity of the Pleiades, Hyades and Sirius moving groups

    Full text link
    We investigate the nature of the classical low-velocity structures in the local velocity field, i.e. the Pleiades, Hyades and Sirius moving groups. After using a wavelet transform to locate them in velocity space, we study their relation with the open clusters kinematically associated with them. By directly comparing the location of moving group stars in parallax space to the isochrones of the embedded clusters, we check whether, within the observational errors on the parallax, all moving group stars could originate from the on-going evaporation of the associated cluster. We conclude that, in each moving group, the fraction of stars making up the velocity-space overdensity superimposed on the background is higher than the fraction of stars compatible with the isochrone of the associated cluster. These observations thus favour a dynamical (resonant) origin for the Pleiades, Hyades and Sirius moving groups.Comment: 8 pages, 8 figures, accepted for publication in A&

    Are beryllium abundances anomalous in stars with giant planets?

    Full text link
    In this paper we present beryllium (Be) abundances in a large sample of 41 extra-solar planet host stars, and for 29 stars without any known planetary-mass companion, spanning a large range of effective temperatures. The Be abundances were derived through spectral synthesis done in standard Local Thermodynamic Equilibrium, using spectra obtained with various instruments. The results seem to confirm that overall, planet-host stars have ``normal'' Be abundances, although a small, but not significant, difference might be present. This result is discussed, and we show that this difference is probably not due to any stellar ``pollution'' events. In other words, our results support the idea that the high-metal content of planet-host stars has, overall, a ``primordial'' origin. However, we also find a small subset of planet-host late-F and early-G dwarfs that might have higher than average Be abundances. The reason for the offset is not clear, and might be related either to the engulfment of planetary material, to galactic chemical evolution effects, or to stellar-mass differences for stars of similar temperature.Comment: 15 pages, 9 figures, accepted for publication in Astronomy & Astrophysic

    Tests of model predictions for the responses of stellar spectra and absorption-line indices to element abundance variations. Tests of model predictions for the responses of stellar spectra and absorption-line indices to element abundance variations.

    Get PDF
    A method that is widely used to analyse stellar populations in galaxies is to apply the theoretically derived responses of stellar spectra and line indices to element abundance variations, which are hereafter referred to as response functions. These are applied in a differential way, to base models, in order to generate spectra or indices with different abundance patterns. In this paper, sets of such response functions for three different stellar evolutionary stages are tested with new empirical [Mg/Fe] abundance data for the medium-resolution Isaac Newton Telescope library of empirical spectra (MILES). Recent theoretical models and observations are used to investigate the effects of [Fe/H], [Mg/H] and overall [Z/H] on spectra, via ratios of spectra for similar stars. The global effects of changes in abundance patterns are investigated empirically through direct comparisons of similar stars from MILES, highlighting the impact of abundance effects in the blue part of the spectrum, particularly for lower temperature stars. It is found that the relative behaviour of iron-sensitive line indices are generally well predicted by response functions, whereas Balmer line indices are not. Other indices tend to show large scatter about the predicted mean relations. Implications for element abundance and age studies in stellar populations are discussed and ways forward are suggested to improve the match with the behaviour of spectra and line-strength indices observed in real stars

    Nitrogen abundances in Planet-harbouring stars

    Full text link
    We present a detailed spectroscopic analysis of nitrogen abundances in 91 solar-type stars, 66 with and 25 without known planetary mass companions. All comparison sample stars and 28 planet hosts were analysed by spectral synthesis of the near-UV NH band at 3360 \AA observed at high resolution with the VLT/UVES,while the near-IR NI 7468 \AA was measured in 31 objects. These two abundance indicators are in good agreement. We found that nitrogen abundance scales with that of iron in the metallicity range -0.6 <[Fe/H]< +0.4 with the slope 1.08 \pm 0.05. Our results show that the bulk of nitrogen production at high metallicities was coupled with iron. We found that the nitrogen abundance distribution in stars with exoplanets is the high [Fe/H] extension of the curve traced by the comparison sample of stars with no known planets. A comparison of our nitrogen abundances with those available in the literature shows a good agreement.Comment: 15 pages, 7 figures, Accepted for publication in A&
    corecore