25 research outputs found

    Mapping cellular processes in the mesenchyme during palatal development in the absence of Tbx1 reveals complex proliferation changes and perturbed cell packing and polarity

    Get PDF
    The 22q11 deletion syndromes represent a spectrum of overlapping conditions including cardiac defects and craniofacial malformations. Amongst the craniofacial anomalies that are seen, cleft of the secondary palate is a common feature. Haploinsufficiency of TBX1 is believed to be a major contributor toward many of the developmental structural anomalies that occur in these syndromes, and targeted deletion of Tbx1 in the mouse reproduces many of these malformations, including cleft palate. However, the cellular basis of this defect is only poorly understood. Here, palatal development in the absence of Tbx1 has been analysed, focusing on cellular properties within the whole mesenchymal volume of the palatal shelves. Novel image analyses and data presentation tools were applied to quantify cell proliferation rates, including regions of elevated as well as reduced proliferation, and cell packing in the mesenchyme. Also, cell orientations (nucleus–Golgi axis) were mapped as a potential marker of directional cell movement. Proliferation differed only subtly between wild‐type and mutant until embryonic day (E)15.5 when proliferation in the mutant was significantly lower. Tbx1 (−/−) palatal shelves had slightly different cell packing than wild‐type, somewhat lower before elevation and higher at E15.5 when the wild‐type palate has elevated and fused. Cell orientation is biased towards the shelf distal edge in the mid‐palate of wild‐type embryos but is essentially random in the Tbx1 (−/−) mutant shelves, suggesting that polarised processes such as directed cell rearrangement might be causal for the cleft phenotype. The implications of these findings in the context of further understanding Tbx1 function during palatogenesis and of these methods for the more general analysis of genotype–phenotype functional relationships are discussed

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Intrinsic factors and the embryonic environment influence the formation of extragonadal teratomas during gestation

    Get PDF
    Background: Pluripotent cells are present in early embryos until the levels of the pluripotency regulator Oct4 drop at the beginning of somitogenesis. Elevating Oct4 levels in explanted post-pluripotent cells in vitro restores their pluripotency. Cultured pluripotent cells can participate in normal development when introduced into host embryos up to the end of gastrulation. In contrast, pluripotent cells efficiently seed malignant teratocarcinomas in adult animals. In humans, extragonadal teratomas and teratocarcinomas are most frequently found in the sacrococcygeal region of neonates, suggesting that these tumours originate from cells in the posterior of the embryo that either reactivate or fail to switch off their pluripotent status. However, experimental models for the persistence or reactivation of pluripotency during embryonic development are lacking. Methods: We manually injected embryonic stem cells into conceptuses at E9.5 to test whether the presence of pluripotent cells at this stage correlates with teratocarcinoma formation. We then examined the effects of reactivating embryonic Oct4 expression ubiquitously or in combination with Nanog within the primitive streak (PS)/tail bud (TB) using a transgenic mouse line and embryo chimeras carrying a PS/TB-specific heterologous gene expression cassette respectively. Results: Here, we show that pluripotent cells seed teratomas in post-gastrulation embryos. However, at these stages, induced ubiquitous expression of Oct4 does not lead to restoration of pluripotency (indicated by Nanog expression) and tumour formation in utero, but instead causes a severe phenotype in the extending anteroposterior axis. Use of a more restricted T(Bra) promoter transgenic system enabling inducible ectopic expression of Oct4 and Nanog specifically in the posteriorly-located primitive streak (PS) and tail bud (TB) led to similar axial malformations to those induced by Oct4 alone. These cells underwent induction of pluripotency marker expression in Epiblast Stem Cell (EpiSC) explants derived from somitogenesis-stage embryos, but no teratocarcinoma formation was observed in vivo. Conclusions: Our findings show that although pluripotent cells with teratocarcinogenic potential can be produced in vitro by the overexpression of pluripotency regulators in explanted somitogenesis-stage somatic cells, the in vivo induction of these genes does not yield tumours. This suggests a restrictive regulatory role of the embryonic microenvironment in the induction of pluripotency

    Thick and thin fingers point out Turing waves

    Get PDF
    Mouse genetics and computer simulations demonstrate that digit number and width are controlled by a Turing-type mechanism in which distal Hox genes modulate periodicity
    corecore