204 research outputs found

    Characterizing College Science Assessments: The Three-Dimensional Learning Assessment Protocol

    Get PDF
    Citation: Laverty, J. T., Underwood, S. M., Matz, R. L., Posey, L. A., Carmel, J. H., Caballero, M. D., . . . Cooper, M. M. (2016). Characterizing College Science Assessments: The Three-Dimensional Learning Assessment Protocol. Plos One, 11(9), 21. doi:10.1371/journal.pone.0162333Many calls to improve science education in college and university settings have focused on improving instructor pedagogy. Meanwhile, science education at the K-12 level is undergoing significant changes as a result of the emphasis on scientific and engineering practices, crosscutting concepts, and disciplinary core ideas. This framework of "three-dimensional learning" is based on the literature about how people learn science and how we can help students put their knowledge to use. Recently, similar changes are underway in higher education by incorporating three-dimensional learning into college science courses. As these transformations move forward, it will become important to assess three-dimensional learning both to align assessments with the learning environment, and to assess the extent of the transformations. In this paper we introduce the Three-Dimensional Learning Assessment Protocol (3D-LAP), which is designed to characterize and support the development of assessment tasks in biology, chemistry, and physics that align with transformation efforts. We describe the development process used by our interdisciplinary team, discuss the validity and reliability of the protocol, and provide evidence that the protocol can distinguish between assessments that have the potential to elicit evidence of three-dimensional learning and those that do not

    Learner-Centered Inquiry in Undergraduate Biology: Positive Relationships with Long-Term Student Achievement

    Get PDF
    We determined short- and long-term correlates of a revised introductory biology curriculum on understanding of biology as a process of inquiry and learning of content. In the original curriculum students completed two traditional lecture-based introductory courses. In the revised curriculum students completed two new learner-centered, inquiry-based courses. The new courses differed significantly from those of the original curriculum through emphases on critical thinking, collaborative work, and/or inquiry-based activities. Assessments were administered to compare student understanding of the process of biological science and content knowledge in the two curricula. More seniors who completed the revised curriculum had high-level profiles on the Views About Science Survey for Biology compared with seniors who completed the original curriculum. Also as seniors, students who completed the revised curriculum scored higher on the standardized Biology Field Test. Our results showed that an intense inquiry-based learner-centered learning experience early in the biology curriculum was associated with long-term improvements in learning. We propose that students learned to learn science in the new courses which, in turn, influenced their learning in subsequent courses. Studies that determine causal effects of learner-centered inquiry-based approaches, rather than correlative relationships, are needed to test our proposed explanation

    Success of a suicidal defense strategy against infection in a structured habitat

    Get PDF
    Pathogen infection often leads to the expression of virulence and host death when the host-pathogen symbiosis seems more beneficial for the pathogen. Previously proposed explanations have focused on the pathogen's side. In this work, we tested a hypothesis focused on the host strategy. If a member of a host population dies immediately upon infection aborting pathogen reproduction, it can protect the host population from secondary infections. We tested this "Suicidal Defense Against Infection" (SDAI) hypothesis by developing an experimental infection system that involves a huge number of bacteria as hosts and their virus as pathogen, which is linked to modeling and simulation. Our experiments and simulations demonstrate that a population with SDAI strategy is successful in the presence of spatial structure but fails in its absence. The infection results in emergence of pathogen mutants not inducing the host suicide in addition to host mutants resistant to the pathogen

    1, 2, 3, 4: Infusing Quantitative Literacy into Introductory Biology

    Get PDF
    Biology of the twenty-first century is an increasingly quantitative science. Undergraduate biology education therefore needs to provide opportunities for students to develop fluency in the tools and language of quantitative disciplines. Quantitative literacy (QL) is important for future scientists as well as for citizens, who need to interpret numeric information and data-based claims regarding nearly every aspect of daily life. To address the need for QL in biology education, we incorporated quantitative concepts throughout a semester-long introductory biology course at a large research university. Early in the course, we assessed the quantitative skills that students bring to the introductory biology classroom and found that students had difficulties in performing simple calculations, representing data graphically, and articulating data-driven arguments. In response to students' learning needs, we infused the course with quantitative concepts aligned with the existing course content and learning objectives. The effectiveness of this approach is demonstrated by significant improvement in the quality of students' graphical representations of biological data. Infusing QL in introductory biology presents challenges. Our study, however, supports the conclusion that it is feasible in the context of an existing course, consistent with the goals of college biology education, and promotes students' development of important quantitative skills

    Evaluating the extent of a large-scale transformation in gateway science courses

    Get PDF
    We evaluate the impact of an institutional effort to transform undergraduate science courses using an approach based on course assessments. The approach is guided by A Framework for K-12 Science Education and focuses on scientific and engineering practices, crosscutting concepts, and core ideas, together called three-dimensional learning. To evaluate the extent of change, we applied the Three-dimensional Learning Assessment Protocol to 4 years of chemistry, physics, and biology course exams. Changes in exams differed by discipline and even by course, apparently depending on an interplay between departmental culture, course organization, and perceived course ownership, demonstrating the complex nature of transformation in higher education. We conclude that while transformation must be supported at all organizational levels, ultimately, change is controlled by factors at the course and departmental levels

    Temperature dependent electronic transport in concentrated solid solutions of the 3d-transition metals Ni, Fe, Co and Cr from first principles

    Get PDF
    An approach previously developed for the calculation of transport coefficients via the Mott relations is applied to the calculation of finite temperature transport properties of disordered alloys—electrical resistivity and the electronic part of thermal conductivity. The coherent-potential approximation is used to treat chemical disorder as well as other sources of electron scattering, i.e., temperature induced magnetic moment fluctuations and lattice vibrations via the alloy analogy model. This approach, which treats all forms of disorder on an equal first-principles footing, is applied to the calculation of transport properties of a series of fcc concentrated solid solutions of the 3d-transition metals Ni, Fe, Co, and Cr. For the nonmagnetic alloys Ni0.8Cr0.2 and Ni0.33Co0.33Cr0.3, the combined effects of chemical disorder and electron-lattice vibrations scattering result in a monotonic increase in the resistivity as a function of temperature from an already large, T=0, residual resistivity. For magnetic Ni0.5Co0.5,Ni0.5Fe0.5, and Ni0.33Fe0.33Co0.33, the residual resistivity of which is small, additional electron scattering from temperature induced magnetic moment fluctuations results in a further rapid increase of the resistivity as a function of temperature. The electronic part of the thermal conductivity in nonmagnetic Ni0.8Cr0.2 and Ni0.33Co0.33Cr0.33 monotonically increases with temperature. This behavior is a result of the competition between a reduction in the conductivity due to electron-lattice vibrations scattering and temperature induced increase in the number of carriers. In the magnetic alloys, electron scattering from magnetic fluctuations leads to an initial rapid decrease in thermal conductivity until this is overcome by an increasing number of carriers at temperatures slightly below the Curie temperature. Similar to the resistivity above TC, the electronic parts of the thermal conductivities are close to each other in all alloys studied

    Cottrell Scholars Collaborative New Faculty Workshop: Professional Development for New Chemistry Faculty and Initial Assessment of Its Efficacy

    Get PDF
    The Cottrell Scholars Collaborative New Faculty Workshop (CSC NFW) is a professional development program that was initiated in 2012 to address absences in the preparation of chemistry faculty at research universities as funded researchers and educators (i.e., teacher–scholars). The primary focus of the workshop is an introduction to evidence-based teaching methods; other topics including mentoring, work–life balance, time management, and grant writing are also addressed. A longer-term aim of the workshop is to develop lifelong teacher–scholars by encouraging workshop participants to engage with teaching-focused faculty learning communities through the CSC NFW and at their institutions. The workshop also provides a platform to investigate the adoption of student-centered pedagogies among new faculty, and a study of that process was initiated concurrently. Thus, the aim of the workshop program is to address professional development needs as well as understand the efficacy of that effort

    Characterizing college science instruction: The Three-Dimensional Learning Observation Protocol

    Get PDF
    The importance of improving STEM education is of perennial interest, and to this end, the education community needs ways to characterize transformation efforts. Three-dimensional learning (3DL) is one such approach to transformation, in which core ideas of the discipline, scientific practices, and crosscutting concepts are combined to support student development of disciplinary expertise. We have previously reported on an approach to the characterization of assessments, the Three-Dimensional Learning Assessment Protocol (3D-LAP), that can be used to identify whether assessments have the potential to engage students in 3DL. Here we present the development of a companion, the Three-Dimensional Learning Observation Protocol (3D-LOP), an observation protocol that can reliably distinguish between instruction that has potential for engagement with 3DL and instruction that does not. The 3D-LOP goes beyond other observation protocols, because it is intended not only to characterize the pedagogical approaches being used in the instructional environment, but also to identify whether students are being asked to engage with scientific practices, core ideas, and crosscutting concepts. We demonstrate herein that the 3D-LOP can be used reliably to code for the presence of 3DL; further, we present data that show the utility of the 3D-LOP in differentiating between instruction that has the potential to promote 3DL from instruction that does not. Our team plans to continue using this protocol to evaluate outcomes of instructional transformation projects. We also propose that the 3D-LOP can be used to support practitioners in developing curricular materials and selecting instructional strategies to promote engagement in three-dimensional instruction

    A Model for Using a Concept Inventory as a Tool for Students' Assessment and Faculty Professional Development

    Get PDF
    This essay describes how the use of a concept inventory has enhanced professional development and curriculum reform efforts of a faculty teaching community. The Host Pathogen Interactions (HPI) teaching team is composed of research and teaching faculty with expertise in HPI who share the goal of improving the learning experience of students in nine linked undergraduate microbiology courses. To support evidence-based curriculum reform, we administered our HPI Concept Inventory as a pre- and postsurvey to approximately 400 students each year since 2006. The resulting data include student scores as well as their open-ended explanations for distractor choices. The data have enabled us to address curriculum reform goals of 1) reconciling student learning with our expectations, 2) correlating student learning with background variables, 3) understanding student learning across institutions, 4) measuring the effect of teaching techniques on student learning, and 5) demonstrating how our courses collectively form a learning progression. The analysis of the concept inventory data has anchored and deepened the team's discussions of student learning. Reading and discussing students' responses revealed the gap between our understanding and the students' understanding. We provide evidence to support the concept inventory as a tool for assessing student understanding of HPI concepts and faculty development

    Quantifier scope in sentence prosody? : A view from production

    Get PDF
    Logical scope interpretation and sentence prosody exhibit intricate, yet scarcely studied interrelations across a variety of languages and constructions. Despite these observable interrelations, it is not clear whether quantifier scope by itself is able to directly affect prosodic form. Information structure is a key potential confounding factor, as it appears to richly interact both with scope interpretation and with prosodic form. To address this complication, the current study investigates, based on data from Hungarian, whether quantifier scope is expressed prosodically if information structure is kept in check. A production experiment is presented that investigates grammatically scope ambiguous doubly quantified sentences with varied focus structures, while lacking a syntactically marked topic or focus. In contrast to the information structural manipulation, which is manifest in the analysis of the acoustic data, the results reveal no prosodic effect of quantifier scope, nor the interaction of scope with information structure. This finding casts doubt on the notion that logical scope can receive direct prosodic expression, and it indirectly corroborates the restrictive view instead that scope interpretation is encoded in prosody only in cases in which it is a free rider on information structure
    • …
    corecore