274 research outputs found

    Multi-proxy constraints on the significance of covariant ÎŽ13C values in carbonate and organic carbon during the early Mississippian

    Get PDF
    This study investigates the covariation between carbonate and organic ÎŽ13C values in a proximal to distal transect of four outcrops in the Madison Limestone in the Western United States Rockies, combined with ÎŽ34S values of carbonate associated sulphate, the concentration of acid-insoluble material and measurements of total organic carbon. These new geochemical datasets not only allow for an evaluation of carbon isotope covariance during one of the largest perturbations to the global carbon cycle over the past 550 Myr, but also constrain the cause of the excursion in carbonate ÎŽ13C values. The results support the hypothesis that a period of anoxia did not play a role in generating the positive carbonate ÎŽ13C values, but rather favour interpretations by previous workers that the proliferation of land plants destabilized the Carboniferous carbon cycle, setting the stage for a significant change in the carbonate ÎŽ13C values of contemporaneous marine carbonates. These results also demonstrate that one of the largest perturbations to the global carbon cycle did not produce synchronous variations in carbonate and organic ÎŽ13C values, emphasizing the importance of local depositional controls on carbon isotope covariance in the geological record in both modern and ancient environments

    Sedimentary dynamics and high-frequency sequence stratigraphy of the southwestern slope of Great Bahama Bank

    Get PDF
    New geophysical data from the leeward slope of Great Bahama Bank show how contour currents shape the slope and induce re-sedimentation processes. Along slope segments with high current control, drift migration and current winnowing at the toe of slope form a deep moat. Here, the slope progradation is inhibited by large channel incisions and the accumulation of large mass transport complexes, triggered by current winnowing. In areas where the slope is bathed by weaker currents, the accumulation of mass transport complexes and channel incision is rather controlled by the position of the sea level. Large slope failures were triggered during the Mid-Pleistocene transition and Mid-Brunhes event, both periods characterized by changes in the cyclicity or the amplitude of sea-level fluctuations. Within the seismic stratigraphic framework of third order sequences, four sequences of higher order were identified in the succession of the upper Pleistocene. These higher order sequences also show clear differences in function of the slope exposure to contour currents. Two stochastic models emphasize the role of the contour currents and slope morphology in the facies distribution in the upper Pleistocene sequences. In areas of high current influence the interplay of erosional and depositional processes form a complex fades pattern with downslope and along strike facies alterations. In zones with lower current influence, major facies alternations occur predominately in downslope direction, and a layer-cake pattern characterizes the along strike direction. Therefore, this study highlights that contour currents are an underestimated driver for the sediment distribution and architecture of carbonate slopes

    Dataset of characteristic remanent magnetization and magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform)

    Get PDF
    This data article describes data of magnetic stratigraphy and anisotropy of isothermal remanent magnetization (AIRM) from "Magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform) reveal changes in the monsoon system" [1]. Acquisition of isothermal magnetization on pilot samples and anisotropy of isothermal remanent magnetization are reported as raw data; magnetostratigraphic data are reported as characteristic magnetization (ChRM).info:eu-repo/semantics/publishedVersio

    Carbonate delta drift: a new sediment drift type

    Get PDF
    Based on high-resolution reflection seismic and core data from IODP Expedition 359 we present a new channel-related drift type attached to a carbonate platform slope, which we termed delta drift. Like a river delta, it is comprised of several stacked lobes and connected to a point source. The delta drifts were deposited at the exit of two gateways that connect the Inner Sea of the Maldives carbonate platform with the open ocean. The channels served as conduits focusing and accelerating the water flow; Entrained material was deposited at their mouth where the flows relaxed. The lobe-shaped calcareous sediment drifts must have formed under persistent water through flow. Sediment supply was relatively high and continuous, resulting in an average sedimentation rate of 17 cm ka−1. The two delta drifts occupy 342 and 384 km2, respectively; with a depositional relief of approximately 500 m. They have a sigmoidal clinoform reflection pattern with a particular convex upward bending of the foresets. In the Maldives the drift onset marks the transition from a sea-level controlled to a progressively current dominated depositional regime. This major event occurred in the Serravallian about 13 Ma ago, leading to the partial drowning of the carbonate platform and the creation of shallow seaways. The initial bank-enclosed topography resembles an “empty bucket” geometry which is rapidly filled by the drift sediments that aggrade and prograde into the basin. Thereby the depositional environment of the delta drifts changes from deep water (>500) to shallow-water conditions at their topsets, indicated by the overall coarsening upward trend in grain size and the presence of shallow water large benthic foraminifers at their top

    Cyclic anoxia and organic rich carbonate sediments within a drowned carbonate platform linked to Antarctic ice volume changes: Late Oligocene-early Miocene Maldives

    Get PDF
    This paper reports on the newly discovered occurrence of thick sequences (∌100 m) of Late Oligocene and Early Miocene (∌24.9 to ∌20 Ma) interbedded organic-rich sediments (sapropels) and pelagic (organic poor) carbonates at Sites U1466 and U1468 drilled in the Maldives archipelago during the International Ocean Discovery Program (IODP) Expedition 359. This occurrence is unusual in that this sequence is located > 1000 m above the surrounding ocean floor within an inter-atoll basin and not linked to any known global oceanic events. Total organic content reaches as high as 35% in the darker layers, while the interbedded carbonates have concentrations of less than 0.1%. Trace elements characteristic of anoxic waters, such as Mo, V, Cr, U, and Pb, correlate positively with concentrations of organic carbon. Nitrogen isotopic data show no evidence that the intervals of high total organic carbon are related to enhanced productivity driven by upwelling. Instead, high organic carbon is associated with intervals of anoxia. We propose that sea-level fluctuations linked to changes in Antarctic ice volume restricted exchange with the open ocean causing bottom waters of the inter-atoll basin to become anoxic periodically. The architecture of the platform at the end of the Oligocene, combined with the global sea-level highstand, set the stage for orbitally-driven sea-level changes producing cyclic deposition of sapropels. The proposed mechanism may serve as an analogue for other occurrences of organic carbon-rich sediments within carbonate platform settings.</p

    The abrupt onset of the modern South Asian Monsoon winds

    Get PDF
    The South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs. This coincided with the Indian Ocean Oxygen Minimum Zone expansion as revealed by geochemical tracers and the onset of upwelling reflected by the sediment's content of particulate organic matter. A weaker 'proto-monsoon' existed between 12.9 and 25 Ma, as mirrored by the sedimentary signature of dust influx. Abrupt SAM initiation favors a strong influence of climate in addition to the tectonic control, and we propose that the post Miocene Climate Optimum cooling, together with increased continentalization and establishment of the bipolar ocean circulation, i.e. the beginning of the modern world, shifted the monsoon over a threshold towards the modern system

    A two million year record of low-latitude aridity linked to continental weathering from the Maldives

    Get PDF
    Tem uma correção em http://hdl.handle.net/10400.1/12390Indian-Asian monsoon has oscillated between warm/wet interglacial periods and cool/dry glacial periods with periodicities closely linked to variations in Earth’s orbital parameters. However, processes that control wet versus dry, i.e. aridity cyclical periods on the orbital time-scale in the low latitudes of the Indian-Asian continent remain poorly understood because records over millions of years are scarce. The sedimentary record from International Ocean Discovery Program (IODP) Expedition 359 provides a well-preserved, high-resolution, continuous archive of lithogenic input from the Maldives reflecting on low-latitude aridity cycles. Variability within the lithogenic component of sedimentary deposits of the Maldives results from changes in monsoon-controlled sedimentary sources. Here, we present X-ray fluorescence (XRF) core-scanning results from IODP Site U1467 for the past two million years, allowing full investigation of orbital periodicities. We specifically use the Fe/K as a terrestrial climate proxy reflecting on wet versus dry conditions in the source areas of the Indian-Asian landmass, or from further afield. The Fe/K record shows orbitally forced cycles reflecting on changes in the relative importance of aeolian (stronger winter monsoon) during glacial periods versus fluvial supply (stronger summer monsoon) during interglacial periods. For our chronology, we tuned the Fe/K cycles to precessional insolation changes, linking Fe/K maxima/minima to insolation minima/maxima with zero phase lag. Wavelet and spectral analyses of the Fe/K record show increased dominance of the 100 kyr cycles after the Mid Pleistocene Transition (MPT) at 1.25 Ma in tandem with the global ice volume benthic ή18O data (LR04 record). In contrast to the LR04 record, the Fe/K profile resolves 100-kyr-like cycles around the 130 kyr frequency band in the interval from 1.25 to 2 million years. These 100-kyr-like cycles likely form by bundling of two or three obliquity cycles, indicating that low-latitude Indian-Asian climate variability reflects on increased tilt sensitivity to regional eccentricity insolation changes (pacing tilt cycles) prior to the MPT. The implication of appearance of the 100 kyr cycles in the LR04 and the Fe/K records since the MPT suggests strengthening of a climate link between the low and high latitudes during this period of climate transition.SFRH/BPD/96960/2013; PTDC/MAR-PRO/3396/2014info:eu-repo/semantics/publishedVersio
    • 

    corecore