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ABSTRACT

This study investigates the covariation between carbonate and organic d13C
values in a proximal to distal transect of four outcrops in the Madison Lime-

stone in the Western United States Rockies, combined with d34S values of car-

bonate associated sulphate, the concentration of acid-insoluble material and

measurements of total organic carbon. These new geochemical datasets not

only allow for an evaluation of carbon isotope covariance during one of the

largest perturbations to the global carbon cycle over the past 550 Myr, but also

constrain the cause of the excursion in carbonate d13C values. The results sup-

port the hypothesis that a period of anoxia did not play a role in generating

the positive carbonate d13C values, but rather favour interpretations by previ-

ous workers that the proliferation of land plants destabilized the Carbonifer-

ous carbon cycle, setting the stage for a significant change in the carbonate

d13C values of contemporaneous marine carbonates. These results also demon-

strate that one of the largest perturbations to the global carbon cycle did not

produce synchronous variations in carbonate and organic d13C values, empha-

sizing the importance of local depositional controls on carbon isotope covari-

ance in the geological record in both modern and ancient environments.

Keywords Carbonate, carbonate associated sulphate, Mississippian, organic
carbon, stable isotopes.

INTRODUCTION

Perturbations to the global carbon cycle result in
large changes in the d13C values of marine carbon-
ates, and have often been linked to important bio-
geochemical events in Earth history, such as
extinctions, periods of high productivity, evolu-
tionary events and changes in the global redox
conditions on Earth (Berner, 1994, 1998; Hayes
et al., 1999; Beerling & Berner, 2000; Berner &
Kothvala, 2001; Berner, 2002; Saltzman et al.,
2004; Galli et al., 2005; Immenhauser et al.,
2008; Jenkyns, 2010; Meyer et al., 2013; and
many others). In order to produce accurate

interpretations of the dynamics of the ancient glo-
bal carbon cycle, confidence in the primary, unal-
tered nature of the carbonate d13C values is
fundamental. A positive correlation between co-
eval carbonate and organic d13C values from mar-
ine carbonates has been used as an indicator of
pristine carbonate d13C values (Knoll et al., 1986;
Kaufman & Knoll, 1995; Hoffman et al., 1998;
Halverson et al., 2002; Cramer & Saltzman, 2007;
Young et al., 2008; Luo et al., 2010; Meyer et al.,
2013). This is based on the assumption that mar-
ine carbonates and organic material will equally
record changes in the d13C values of the dissolved
inorganic carbon (DIC) pool in the surface waters
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of the ocean as it changes in response to perturba-
tions in the global carbon cycle. Offset by photo-
synthetic fractionation, carbonate and organic
d13C values are then assumed to record the
response of the contemporaneous global carbon
cycle in response to tectonic, volcanic, biogeo-
chemical and weathering fluxes. This approach
has been applied in a variety of studies of ancient
deposits (Knoll et al., 1986; Kaufman & Knoll,
1995; Hoffman et al., 1998; Halverson et al., 2002;
Krull et al., 2004; Werne & Hollander, 2004; Cra-
mer & Saltzman, 2007; Young et al., 2008; Ader
et al., 2009; LaPorte et al., 2009; Nunn et al.,
2009; Korte & Kozur, 2010; Luo et al., 2010; Swan-
son-Hysell et al., 2010; Meyer et al., 2011; Meyer
et al., 2013; Koevoets et al., 2016; Caravaca et al.,
2017). In contrast, recent studies have found that
diagenetic alteration, as well as syndepositional
mixing between isotopically distinct sources of
carbonate and organic matter, can produce highly
covariant d13C values in marine carbonates and
organic matter from a modern carbonate platform
environment where age, diagenetic history, pCO2,
carbonate and organic matter producers, as well
as sediment transport pathways, are well-con-
strained (Oehlert et al., 2012; Oehlert & Swart,
2014). The results of these studies suggest that
while carbon isotope covariance should be
expected theoretically, local environmental fac-
tors can exert an overarching control in establish-
ing the relationship between carbonate and
organic d13C values in settings where multiple
sources of carbonate and organic matter are con-
tributed to a deposit.
In light of these observations, this study aims to

evaluate the tipping point, where the overarching
control on carbon isotope covariance may switch
from local environmental factors to global carbon
cycle dynamics, by investigating one of the largest
positive excursions in carbonate d13C values dur-
ing the Phanerozoic. This change is recorded in
lowermost Carboniferous (Lower Mississippian)
carbonates from the Ural Mountains (Saltzman
et al., 2004), the Dinant Basin in Belgium (Saltz-
man et al., 2004) and multiple locations in the
western United States (Bruckschen et al., 1999;
Mii et al., 1999; Saltzman, 2002, 2003; Gill et al.,
2007; Koch et al., 2014), including the transect of
four outcrops studied here (Fig. 1; Katz et al.,
2007), each of which record peak carbonate d13C
values ≥+7& in the western US (Saltzman et al.,
2004). The globally recognizable positive excur-
sion in carbonate d13C values occurs in Sequence
II of the Lodgepole Formation within the Madison
Limestone at the boundary between the

Kinderhookian and Osagean stages 355�5 Ma
(Fig. 2; Sando, 1985; Elrick & Read, 1991; Saltz-
man et al., 2000; Saltzman et al., 2004; Buoni-
conti, 2008). Understanding the cause of this
large positive excursion in carbonate d13C values
has been a focus of many recent studies because it
occurs during a period of intense change in Earth
history, including a transition from greenhouse to
icehouse conditions (Crowell, 1999) and the gen-
eral concurrence with the evolution of vascular
land plants (Berner, 1998; Berner & Petsch, 1998).
Such transient anomalies in carbonate d13C val-
ues can be difficult to model (Saltzman et al.,
2004) and can occur as a result of processes unre-
lated to global carbon cycling (Swart & Eberli,
2005; Swart, 2008). These difficulties are espe-
cially apparent in ancient epeiric seaways where
local processes can overprint or exaggerate global
carbon cycling signatures (Immenhauser et al.,
2003, 2008). As a result, previous studies aiming
to constrain the initiation of this large positive
excursion in carbonate d13C values alone have
presented conflicting interpretations. Proposed
mechanisms have included the enhanced seques-
tration of carbon in terrestrial sinks as a result of
the evolution of vascular land plants (Berner,
1998), the weathering of ancient uplifted carbon-
ates (Saltzman, 2003) and a major increase in
productivity resulting from a large marine trans-
gression (Katz et al., 2007). Tectonic forcings,
such as uplifts in the mid-latitudes and subse-
quent reduction in Earth’s surface temperatures
and pCO2 resulting from increased albedo (Veev-
ers & Powell, 1987) and the low-latitude Antler
Orogeny, which may have enhanced rates of
organic carbon burial as a result of increased fly-
sch deposition (Saltzman et al., 2000; Saltzman,
2003) have also been proposed. The variability in
mechanisms proposed suggests that further inves-
tigation with additional geochemical constraints
is necessary, which will improve understanding
of the hierarchical control of intrinsic and extrin-
sic controls on carbon isotope covariance.
In this study, the relationship between the

d13C values of carbonate and organic matter is
evaluated in a proximal to distal transect of out-
crops of the ca 350 Myr Madison Limestone
(Freemont Canyon, Wind River Canyon, Sheep
Mountain and Benbow Mine Road; Fig. 1) dur-
ing one of the most significant perturbations to
the Phanerozoic global carbon cycle. A multi-
proxy geochemical approach is employed in
order to evaluate the lack of covariance between
carbonate and organic d13C values, and to con-
strain the mechanism for this perturbation.
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GEOLOGICAL SETTING

The mostly Lower Mississippian Madison Lime-
stone is an extensive carbonate ramp extending
from the Canadian Arctic to New Mexico
(Maughan, 1983; Scotese & McKerrow, 1990).
The Madison Limestone was deposited within 0
to 10°N of the palaeoequator and had an extent
of more than 640 000 km2 (Maughan, 1983; Sco-
tese & McKerrow, 1990; Katz et al., 2007). Out-
crops occur in Montana, Wyoming and Nevada
(Sando, 1985; Katz et al., 2007; Buoniconti,
2008), and regional equivalents have also been

mapped in the mid-continent, in Iowa, Illinois,
Indiana, Missouri, Oklahoma and Texas (Mii
et al., 1999), as well as in drill cores from Kan-
sas, Nebraska, Iowa, Missouri and Oklahoma
(Mii et al., 1999; Koch et al., 2014). The Madi-
son shelf was bounded by the Transcontinental
Arch to the east, and deepened to the west into
the Antler Trough and into the Montana Trough
and Williston Basin to the north (Sando, 1977,
1985; Gutschick et al., 1980; Maughan, 1983;
Smith et al., 2004; Buoniconti, 2008).
The Madison Limestone was deposited on a

gently dipping ramp with laterally extensive,

Fig. 1. Palaeogeographic map of the
Madison Limestone and study
locations: Freemont Canyon (FC;
42°29031.5″N, 106°46047.5″W); Wind
River Canyon (WRC; 43°31052″N,
108°10040.5″W); Sheep Mountain
(SM; 44°36040.1″N, 108°8023.2″W)
and Benbow Mine Road (BM;
45°22025.3″N, 109°47039.3″W).
Modified from Gutschick &
Sandberg (1983), Sonnenfeld (1996)
and Katz et al. (2007). Red line
labelled A–A’ is the same line as
shown in Fig. 3.
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uniform facies belts that can reach 100 km of
width (Elrick & Read, 1991; Sonnenfeld, 1996;
Smith et al., 2004; Westphal et al., 2004; Buoni-
conti, 2008). The shallow-water deposits are
mostly comprised of dolomite and limestones, but
the base of the formation and the more basinward
sections of the ramp are more argillaceous (Son-
nenfeld, 1996; Smith et al., 2004; Westphal et al.,
2004; Katz et al., 2007). High-frequency sea-level
fluctuations forced facies belts to shift on the ramp.
As a result, facies belts stepped landward during
transgressions and prograded seaward during
regressions (Sonnenfeld, 1996). The entire Madi-
son Limestone represents one second-order super-
sequence that internally consists of six third-order
sequences (Sonnenfeld, 1996; Smith et al., 2004;
Westphal et al., 2004). This study focuses on the
three oldest third-order sequences, I, II and III,
which comprise the Lodgepole Formation and the
bottom of the Mission Canyon Formation (Sando,
1977, 1985; Gutschick et al., 1980; Sonnenfeld,
1996; Smith et al., 2004; Buoniconti, 2008).

PREVIOUS WORK ON DOLOMITE IN THE
MADISON LIMESTONE

The Madison Limestone is in certain places heav-
ily dolomitized and the distribution of the dolo-
mite largely follows a sequence stratigraphic
framework (Smith et al., 2004; Katz et al., 2007;
Katz, 2008). Based on thin section photomicro-
graphs, Smith et al. (2004) deciphered a parage-
netic sequence that includes early syndepositional
dolomite to later burial dolomitization (Smith
et al., 2004, fig. 10). Dolomite morphology
includes early/syndepositional dolomite rhombs,
dolomitic mudstones, dolomitized grainstones
with a sucrosic texture, to coarser, early burial
dolomite (Smith et al., 2004 – photomicrographs
of fabrics shown in figs 11 and 12). The amount of
dolomitization varies along the ramp and verti-
cally within each section. Fabric selective dolomi-
tization is common in the down-dip areas of the
ramp with mud-dominated strata, where more
than 90% of mud-rich intervals were dolomitized,

Fig. 2. Chronostratigraphic chart of
the Madison Limestone depositional
sequences (modified from
Sonnenfeld, 1996; Katz et al., 2007).
Within the sequence stratigraphy
from Katz (2008) black triangles
represent transgressive hemicycles
while white triangles are the
regressive hemicycles. Madison
Limestone biostratigraphy was
based on the correlation of Rocky
Mountain megafauna and Mamet
Foram Zones (Sando et al., 1969;
Sando & Bamber, 1985). Stage
boundaries were correlated to the
Gradstein et al. (2004) timescale for
North America and NW Europe.
Lane & Brenckle (2001) stages from
Belgium are also shown. Dates
between stage boundaries were
adjusted through comparison of
87Sr/86Sr analysis of Sheep
Mountain and Sacagawea Peak
samples with the seawater 87Sr/86Sr
curve (Bruckschen et al., 1999; Mii
et al., 1999).
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while <5% of the grain-dominated intervals were
dolomitized (Smith et al., 2004). The mud-rich
intervals are part of the transgressive hemicycles
while the grain-dominated strata constitute the
regressive portion of each depositional cycle. In
the middle ramp sections, dolomitization is perva-
sive in the transgressive portion of the second-
order supersequence (Sequences I to III) where
both the mud-dominated and grain-dominated
facies are dolomitized. The regressive portion of
the supersequence (Sequence IV), however, is a
limestone. Towards the up-dip part of the Madison
ramp, dolomitization is ‘patchy’ but again the
transgressive intervals are more dolomitized
(Smith et al., 2004). Although the mineralogy in
the Madison Limestone varies along the ramp from
alternating limestone–dolomite to pervasive
dolomite, the magnitude and expression of the
positive shift in carbonate d13C values was found
to be independent of mineralogy and facies (Katz
et al., 2007).

MATERIALS AND METHODS

Samples

The analyzed samples were collected from four
outcrops of the Madison Limestone, including
exposures in Freemont Canyon, Wind River
Canyon, Sheep Mountain and the Benbow Mine
Road outcrops (Fig. 1; Smith et al., 2004; Katz
et al., 2007; Buoniconti, 2008). The d13C values
of the bulk carbonates, consisting of both calcite
and dolomite, from these outcrops have been
reported previously (Katz et al., 2007), and geo-
chemical and isotopic analyses reported in this
study used the same samples.

Organic d13C values and acid-insoluble
material

Co-occurring sedimentary organic matter was sep-
arated via dissolution in 10% HCl acid following
the method described in Oehlert et al. (2012).
Samples were analyzed using a Costech ECS 4010
(Costech Analytical Technologies Inc., Valencia,
CA, USA). The resulting CO2 gas was transferred
for isotopic measurement to a continuous flow
isotope-ratio mass spectrometer (Delta V Advan-
tage; Thermo Fisher Scientific, Waltham, MA,
USA). The reproducibility of d13C values is
�0�1& as indicated by the standard deviation of
replicate analyses of internal standards of glycine
[n = 54; d13Corg value = �31�8& Vienna Pee Dee

Belemnite (VPDB)]. All d13Corg data are reported
relative to the VPDB scale, defined for organic
carbon as the d13C value of graphite (USGS24) =
�16�05& versus VPDB (Coplen et al., 2006).

Insoluble residue and total organic carbon

Weights and percentages of insoluble residue and
total organic carbon (TOC) were analyzed and cal-
culated following the methods of Oehlert et al.
(2012). The standard deviation of these analyses
is 0�4% based upon repeated analyses of glycine
(n = 54).

Carbonate associated sulphate

Samples analyzed for d34SCAS values were pre-
pared following the methodology of Gill et al.
(2011). Samples were combusted using a Dumas
type combustion system (Europa Scientific,
Crewe, UK) and the resultant SO2 gas was ana-
lyzed using a continuous flow isotope-ratio mass
spectrometer (CFIRMS 20-20; Europa Scientific).
Variations in 18O were eliminated by passing the
SO2 over quartz at 1000°C (Fry et al., 2002). Data
are reported in & relative to Vienna Canyon Dia-
blo Troilite (V-CDT) using the conventional nota-
tion. Reproducibility of measurements was
assessed from repeated analyses of standards of
known weight and composition, and the average
standard error for all three standards is 0�2&
based on 86 replicate analyses.

Carbonate mineralogy

The carbonate mineralogy was determined using
a PANalytical X’pert X-ray Diffractometer
(PANalytical Inc, Almelo, The Netherlands).
Samples were powdered using a mortar and pes-
tle, and spread onto a glass slide. Samples were
allowed to air dry overnight before analysis. The
proportions of low-magnesium calcite (LMC) and
dolomite were calculated from a model that
assumes that the sample is entirely composed of
aragonite, LMC and dolomite. Based upon eleven
replicate analyses of the same sample, the stan-
dard error of the analysis is ca 3%.

RESULTS

Organic d13C values

The d13C values of organic matter from the four
Madison Limestone outcrops range from �20�1
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to �31�1& (Figs 3 to 6). Average values decrease
with increasing distance from the Transcontinen-
tal Arch (Table 1). The average organic d13C val-
ues are highest in Sequence II at each of the four
outcrops, while d13C values from Sequence I are
the lowest (Table 1). Baseline values for pre-
excursion organic d13C values range from �26&
at Freemont Canyon and Wind River Canyon, to
�28& at Sheep Mountain and Benbow Mine
Road (Figs 3 to 6). Maximum values occurring
during Sequence II also exhibit a spatial trend
(Figs 3 to 6), where the most positive values were
observed in the proximal locations of Freemont
Canyon (�20&) and Wind River Canyon (�21&),
to lower maximum organic d13C values at the

distal locations of Sheep Mountain (�22&) and
Benbow Mine Road (�23&). The difference
between the maximum observed values in
Sequence II and the average baseline value from
Sequence I for each outcrop is consistently 6&.

Correlation between carbonate and organic
d13C values

Generally, the correlation between carbonate
and organic d13C values is low at each of the
outcrop locations when the records from
Sequences I, II and III are combined (Table 2;
Fig. 7), with the highest correlation observed at
Sheep Mountain (r2 = 0�25, P < 0�05, n = 224).

Fig. 3. Stratigraphic plots of geochemical records from Freemont Canyon (FC; 42°29031.5″N, 106°46047.5″W),
including carbonate mineralogy, carbonate d13C values (from Katz et al., 2007), organic d13C values, d34SCAS val-
ues, % acid insoluble material and % total organic carbon (TOC). Sequence stratigraphy and sedimentological
descriptions from Smith et al. (2004). In the map of outcrop locations, the red line denotes the same transect as
presented in Fig. 1 and the yellow star indicates the outcrop from which the data presented in this figure were
collected. CS, Cycle Sets; BM, Benbow Mine; SM, Sheep Mountain; VCDT, Vienna Canyon Diablo Troilite; VPDB,
Vienna Pee Dee Belemnite; WRC, Wind River Canyon.

© 2018 The Authors. Sedimentology © 2018 International Association of Sedimentologists, Sedimentology, 66, 241–261
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Separating the records by sequence shows
higher correlation between carbonate and
organic d13C values in Sequence II (Table 2;
Figs 3 to 6). Within Sequence II, the correlation
between carbonate and organic d13C values
becomes stronger with increasing distance from
the Transcontinental Arch (Table 2; Figs 3 to 6).

Total organic carbon

Total organic carbon (TOC) was measured at Ben-
bowMine Road, Wind River Canyon and Freemont
Canyon, and average values are listed in Table 1.
Significant peaks in the concentration of TOC are
observed in the distal portion of the Madison

Fig. 4. Stratigraphic plots of geochemical records from Wind River Canyon (WRC; 43°31052″N, 108°10040.5″W),
including carbonate mineralogy, carbonate d13C values (from Katz et al., 2007), organic d13C values, d34SCAS val-
ues, % acid insoluble material and % total organic carbon (TOC). Sequence stratigraphy and sedimentological
descriptions from Smith et al. (2004). In the map of outcrop locations, the red line denotes the same transect as
presented in Fig. 1 and the yellow star indicates the outcrop from which the data presented in this figure were
collected. CS, Cycle Sets; BM, Benbow Mine; FC, Freemont Canyon; SM, Sheep Mountain; VCDT, Vienna Canyon
Diablo Troilite; VPDB, Vienna Pee Dee Belemnite.
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Fig. 5. Stratigraphic plots of geochemical records from Sheep Mountain (SM; 44°36040.1″N, 108°8023.2″W),
including carbonate mineralogy, carbonate d13C values (from Katz et al., 2007), organic d13C values, d34SCAS val-
ues, % acid insoluble material and % total organic carbon (TOC). Sequence stratigraphy and sedimentological
descriptions from Smith et al. (2004). In the map of outcrop locations, the red line denotes the same transect as
presented in Fig. 1 and the yellow star indicates the outcrop from which the data presented in this figure were
collected. CS, Cycle Sets; BM, Benbow Mine; FC, Freemont Canyon; VCDT, Vienna Canyon Diablo Troilite; VPDB,
Vienna Pee Dee Belemnite; WRC, Wind River Canyon.

© 2018 The Authors. Sedimentology © 2018 International Association of Sedimentologists, Sedimentology, 66, 241–261
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Limestone at Benbow Mine Road in Sequence I
(0�5%), as well as a peak of 0�49% at Wind River
Canyon within Sequence II (Figs 3, 4 and 6).

Acid-insoluble material

Acid-insoluble material was analyzed as a proxy
for siliciclastic input to the system. The percent-
age of insoluble residue (%IR) was measured on
samples collected from BenbowMine Road, Wind
River Canyon and Freemont Canyon, and average
concentrations are listed in Table 1. The concen-
tration of insoluble material ranges from a mini-
mum value of 0�2 wt% to a maximum value of
21�3 wt%. The peak concentrations of %IR mea-
sured in Sequence II occurs at Benbow Mine
Road, with a maximum value of 15�0% but the
highest %IR measured within the Madison tran-
sect (21�3%) occurs within Sequence III at the
most proximal location, Freemont Canyon.

Sulphur isotopes of carbonate associated
sulphate

Records of d34SCAS values were measured in all
four locations and a proximal to distal trend of
increasing average d34SCAS values is observed
within the transect (Table 1; Figs 3 to 6). General
trends of increasing d34SCAS values within
Sequence II occur at BenbowMine Road andSheep
Mountain (Figs 4 and 5). In contrast, d34SCAS val-
ues from Wind River Canyon exhibit a marked
decrease within Sequence II (Fig. 4), while d34SCAS

values from Freemont Canyon exhibit a decreasing
trend below the maximum flooding surface (mfs),
above which the d34SCAS values change dramati-
cally tomore positive values (Fig. 3).

Correlations between all geochemical records

The relationships between each geochemical
record [d34SCAS, carbonate and organic d13C values,
TOC, concentration of acid insoluble materials
and carbonate associated sulphate, along with pub-
lished carbonate d13C values (Katz et al., 2007)],
were assessed using Pearson’s regression analysis,
and the correlation coefficient (r2) is listed for
each outcrop in Table 2. Statistically significant
correlations are listed in bold text in Table 2.

Concentration of carbonate associated
sulphate

The average concentration of CAS at each out-
crop exhibits an increasing trend with distance

from the palaeoshoreline and average values for
each outcrop are listed in Table 1.

Carbonate mineralogy

On average, dolomite, as identified by X-ray
diffractometry, was the predominant carbonate
mineral measured at each outcrop. The average
proportion of dolomite was, however, variable
with higher average proportions occurring in
the proximal outcrops Wind River Canyon
(97%) and Freemont Canyon (81%) when com-
pared to the average proportion of dolomite at
the distal outcrops Sheep Mountain (57%) and
Benbow Mine Road (70%). When the records
are divided by sequence, some trans-ramp
trends become apparent. The sequence with the
lowest average proportion of dolomite is
Sequence III, where calcite is the predominant
mineralogy at Sheep Mountain (54%). In con-
trast, the highest average proportion of dolomite
occurs in Sequence I across the Madison Tran-
sect (Table 1). Sequence II exhibits the most
variable proportions of dolomite along the tran-
sect (Table 1; Figs 2 to 5), with proportions of
dolomite being the highest at Wind River Can-
yon (96%) and the lowest at Sheep Mountain
(45%; Table 1).

DISCUSSION

Carbonate d13C values record a global change
in the Lower Mississippian carbon cycle

Based upon published studies of age equivalent
sections, the excursion in bulk carbonate d13C
values in the Madison Formation is likely to be
an original record of contemporaneous marine
DIC, rather than local or diagenetic effects,
because it is observed globally (Bruckschen
et al., 1999; Mii et al., 1999; Saltzman, 2002,
2003; Saltzman et al., 2004; Gill et al., 2007;
Koch et al., 2014) and the change occurs inde-
pendently of facies (Katz, 2008). Furthermore,
analysis of both calcite and dolomite minerals in
the deposit show the same trends (Katz et al.,
2007) suggesting that the shift in bulk d13C val-
ues in marine carbonates was not driven by dia-
genesis. In the following discussion, the bulk
carbonate d13C values published in Katz et al.
(2007) will be compared with the records of org-
anic d13C values, d34SCAS, TOC, acid-insoluble
residue, mineralogy and concentrations of CAS
measured in this study.

© 2018 The Authors. Sedimentology © 2018 International Association of Sedimentologists, Sedimentology, 66, 241–261

Multi-proxy constraints on d13C values 249



Fig. 6. Stratigraphic plots of geochemical records from Benbow Mine Road (BM; 45°22025.3″N, 109°47039.3″W),
including carbonate mineralogy, carbonate d13C values (from Katz et al., 2007), organic d13C values, d34SCAS val-
ues, % acid insoluble material and % total organic carbon (TOC). Sequence stratigraphy and sedimentological
descriptions from Smith et al. (2004). In the map of outcrop locations, the red line denotes the same transect as
presented in Fig. 1 and the yellow star indicates the outcrop from which the data presented in this figure were
collected. CS, Cycle Sets; FC, Freemont Canyon; SM, Sheep Mountain; VCDT, Vienna Canyon Diablo Troilite;
VPDB, Vienna Pee Dee Belemnite; WRC, Wind River Canyon.

© 2018 The Authors. Sedimentology © 2018 International Association of Sedimentologists, Sedimentology, 66, 241–261
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Importance of terrestrial input in the
deposition of the Madison Limestone

In contrast to the change in bulk carbonate d13C
values driven by global carbon cycling, the new
dataset produced by this study emphasizes the
importance of local depositional controls. Input
of terrestrial materials to the marine environ-
ment during deposition of the Madison Lime-
stone controlled several key features of the
organic d13C values, TOC and acid-insoluble
residue records. First, organic d13C values exhi-
bit more variability than their counterpart bulk
carbonate d13C values (Figs 3 to 6), which sup-
ports the interpretation of decoupled mecha-
nisms driving the two records independently. If
the variability in both the bulk carbonate and
organic matter d13C values was driven by
changes in the d13C value of the DIC, both
records should reflect that change equally.
Although the record from Sheep Mountain exhi-
bits the clearest example of a positive change in
d13C values of organic matter of all four outcrops
measured, the peak d13C values of organic matter
do not persist as long as the more positive bulk
carbonate d13C values do (Figs 3 to 6).

In all sections, the positive excursion in d13C
values of organic matter corresponds to the trans-
gressive portion of Sequence II (Figs 3 to 6).
Organic d13C values at Sheep Mountain change
from �29 to �23& within the transgressive phase
of the sequence, suggesting that the input of ter-
restrial organic matter might be playing a role in
defining the organic d13C values of the bulk sedi-
mentary organic matter. The d13C value of Early
Mississippian terrestrial organic matter is thought
to have increased from�25& to nearly�21& dur-
ing this period, which has been interpreted to
reflect changes in the atmospheric O2/CO2 ratio
(Strauss & Peters-Kottig, 2003; Peters-Kottig et al.,
2006). In contrast to the isotopic compositions of
marine and terrestrial organic matter in the recent
geological record, Early Mississippian terrestrial
organic matter was substantially more enriched in
13C than its counterpart marine organic matter
which averaged �28& during the same time per-
iod (Hayes et al., 1999).
This observation is fundamental in under-

standing the possible impact that degradation of
organic matter and recrystallization of the car-
bonate may have on the carbonate d13C record.
Degradation of terrestrial organic matter in an

Table 1. Average values for carbonate d13C values [&Vienna Pee Dee Belemnite (VPDB)], organic d13C values (&
VPDB), d34SCAS [&Vienna Canyon Diablo Troilite (VCDT)], percent dolomite, percent total organic carbon (TOC),
percent insoluble material and the concentration of carbonate associated sulphate (CAS; ppm) within the whole
record, and then subdivided by sequence. Average values are listed with number of analyses in parentheses. NM,
not measured.

d13Ccarb d13Corg d34SCAS %Dol %TOC %Insol. [CAS]

Whole record
BM +3�4 (193) �26�1 (168) +17�8 (56) 70 (187) 0�06 (174) 2�91 (189) 2800 (37)
SM +3�6 (246) �26�8 (224) +17�8 (29) 57 (84) NM NM 1117 (25)
WRC +2�5 (149) �25�8 (78) +14�8 (19) 97 (141) 0�04 (78) 1�36 (77) 292 (13)
FC +0�7 (99) �23�6 (97) +13�9 (14) 81 (99) 0�04 (99) 2�84 (99) NM

Sequence I
BM +3�1 (84) �26�5 (82) +17�4 (32) 78 (84) 0�07 (83) 2�74 (86) 3460 (16)
SM +2�8 (65) �27�6 (65) +17�7 (6) 93 (20) NM NM 1160 (3)
WRC +2�1 (32) �26�3 (32) +17�6 (6) 96 (32) 0�04 (32) 1�11 (32) 331 (5)
FC +0�1 (29) �24�6 (29) +15�8 (4) 97 (29) 0�03 (29) 2�51 (29) NM

Sequence II
BM +4�6 (78) �25�7 (57) +18�3 (17) 66 (70) 0�04 (62) 3�69 (71) 2236 (14)
SM +4�9 (103) �26�2 (103) +19�0 (18) 45 (43) NM NM 1318 (17)
WRC +3�9 (41) �24�4 (41) +11�5 (8) 96 (35) 0�06 (41) 1�63 (40) 224 (6)
FC +2�3 (38) �22�7 (37) +13�5 (4) 93 (38) 0�05 (38) 3�25 (38) NM

Sequence III
BM +1�2 (31) �25�8 (29) +18�9 (7) 61 (33) 0�05 (29) 1�65 (32) 2423 (7)
SM +2�4 (78) �26�8 (56) +13�5 (5) 46 (21) NM NM 407 (5)
WRC +1�9 (76) �24�9 (5) +16�8 (5) 97 (74) 0�03 (5) 0�76 (5) 398 (2)
FC �0�6 (32) �24�1 (31) +13�0 (6) 52 (32) 0�03 (32) 2�66 (32) NM

BM, Benbow Mine Road; FC, Freemont Canyon; SM, Sheep Mountain; WRC, Wind River Canyon.
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oxic ocean during the Early Mississippian
would result in a source of relatively 13C-
enriched CO2 to the DIC pool compared to the
degradation of contemporaneous marine organic
matter. However, terrestrial organic matter has
been shown to be more resistant to degradation
than its counterpart marine organic material
(Freudenthal et al., 2001; Lehmann et al., 2002;
Lamb et al., 2006; Huguet et al., 2008) and
therefore was less likely to contribute to the DIC
pool during deposition of the Madison Lime-
stone. As a result, changes in the DIC pool were
more likely to be driven by enhanced drawdown
of CO2 in the terrestrial realm. Finally, in con-
trast to the model of Oehlert & Swart (2014)
where subaerial exposures drive the oxidation
and recrystallization reactions causing coupled
d13C excursions in recent carbonates and organic
matter, the excursions in the Madison Limestone
are associated with the transgression and maxi-
mum flooding surface of Sequence II. In concert,
these observations support the interpretation
that the transport of terrestrial organic materials
probably impacted the d13C values of the sedi-
mentary organic matter, without significantly
impacting the d13C values of syndepositional
marine carbonates.
Further support comes from the trend in more

positive organic d13C values during the regres-
sive portion of Sequence II at Sheep Mountain
compared to those at the more proximal sites.
While organic d13C values from Freemont Can-
yon and Wind River Canyon remain positive
during the regression, at Sheep Mountain they
decrease towards more marine organic d13C val-
ues below the maximum flooding surface.
Records from Benbow Mine Road do not show a
significant positive excursion in organic d13C
values during this sequence. This observation
suggests that increasing distance from the terres-
trial source of organic material with a higher

organic d13C value dampens the extent and dura-
tion of the changes observed associated with
Sequence II. This scenario is consistent with a
mixing model between terrestrial and marine
organic material driven by sea-level oscillations,
similar to that observed on the Great Bahama
Bank, where Oehlert et al. (2012) found that iso-
topic differences in the sources of organic car-
bon could produce an excursion in organic d13C
values related to sea-level driven source change.
Mixing between different organic matter sources
has also been suggested as a mechanism during
the Ediacaran (Lee et al., 2013), demonstrating
that syndepositional mixing of isotopically dis-
tinct end-members is not necessarily constrained
to modern environments.
Similar to the organic d13C values, the IR also

did not exhibit one consistent change towards
higher values at all locations (Figs 3 to 6). In fact,
the percent IR actually displays multiple pulses
of terrestrially derived insoluble materials within
the transgressive phase of the sequence which is
in concert with the cyclic nature of the facies
within the sequence. In particular, the most prox-
imal location, Freemont Canyon, exhibits three
pulses of terrestrial inputs of IR within Sequence
II (Fig. 3). Furthermore, the highest proportion of
IR preserved in the sediments was observed at
this location and decreases slightly with distance
from the Transcontinental Arch (Figs 3 to 6), sug-
gesting that the locations closest to the Transcon-
tinental Arch may have experienced the most
significant fertilization impacts from the weath-
ered nutrients transported from the terrestrial to
marine realm.
The higher percentage of TOC in the proximal

settings also supports the interpretation that
increased productivity was the likely causative
factor for persistently positive organic d13C val-
ues in the regressive phase of Sequence II. At
both Wind River Canyon and Freemont Canyon,

Table 2. Correlation coefficients from linear regression analyses of the listed geochemical records. Values in
parentheses are the number of analyses in the regression and the coefficients in bold type have P values <0�05.
NM, not measured.

BM SM WRC FC

d13Ccarb versus d13Corg 0�11 (162) 0�25 (224) 0�11 (78) 0�13 (97)
d13Ccarb versus d34SCAS 0�04 (55) 0�49 (27) 0�44 (18) 0�04 (13)
d13Corg versus d34SCAS 0�03 (55) 0�25 (26) 0�29 (13) 0�30 (13)
TOC versus d34SCAS 0�00 (55) NM 0�00 (14) 0�00 (13)
%Insol versus d34SCAS 0�04 (55) NM 0�05 (14) 0�13 (13)
[CAS] versus d34SCAS 0�04 (37) 0�25 (25) 0�06 (12) NM

BM, Benbow Mine Road; FC, Freemont Canyon; SM, Sheep Mountain; WRC, Wind River Canyon.
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the TOC values are highest in the regressive
phase of Sequence II (Figs 3 to 6), where it is
likely that the runoff of weathered materials
from the Transcontinental Arch relieved a nutri-
ent limitation and enhanced the productivity
rates. At both locations, TOC values start to
decrease towards the sequence boundary
between Sequences II and III, suggesting that the
enhanced rates of marine productivity were
declining towards the end of Sequence II. This
pattern probably explains why organic d13C val-
ues begin to fall back towards pre-excursion
values just prior to the sequence boundary.

Geochemical constraints on the initiation of
excursion in carbonate d13C values

The role of land plants
Whilst various biogeochemical and tectonic forc-
ing mechanisms have been proposed to explain
the initiation of the largest positive excursion in
bulk carbonate d13C values in the Phanerozoic,
the results of this study suggest that the rise of
vascular plants may have played the most signifi-
cant role in generating the change. A review of
Palaeozoic tropical rainforests suggests that the
efficient photosynthetic mechanism of plants at
this time could have resulted in an extremely fast
growth rate (Cleal & Thomas, 2005), and such an
increase in the burial of terrestrial plant vascular
tissue in peat bogs in the Palaeozoic (Berner,
1994, 1998; Berner & Kothvala, 2001) would have
significantly perturbed the global carbon cycle.
The evolution of vascular plants in the terres-

trial realm occurred in the Devonian as observed
by palaeobotanical data (Algeo et al., 1995), and
is evidenced by a distinct drop in atmospheric
levels of CO2 in both modelling and geochemi-
cal studies (Berner, 1994, 1998; Berner & Koth-
vala, 2001). Long-term carbon sequestration by

such coal forests has been estimated to be
between 108 t ha�1 per annum and 390 t ha�1

per annum, resulting from higher Palaeozoic
growth rates when compared to modern tropical
rainforests (Cleal & Thomas, 2005). This intense
drawdown of CO2 during the Devonian would
have set up a much smaller atmospheric reser-
voir of CO2, making the reduced size of the
atmospheric reservoir of CO2 during the Car-
boniferous particularly sensitive to changes in
the rate and location of organic carbon burial.
The more cosmopolitan distribution of land
plants in the Carboniferous resulted in extensive
deposition of lignin-rich organic material in
bogs around the world (Berner & Kothvala,
2001), resulting in an even further drawdown of
CO2 during this time. In addition, exudation of
organic acids by roots and the metabolic recy-
cling of respired carbon acted to enhance phos-
phate weathering on land, which acted to
increase aquatic primary production (Igamber-
diev & Lea, 2006). As a result, the evolution of
terrestrial plants during the Devonian impacted
rates of organic carbon burial on both land and
in the oceans.
The significant drawdown of CO2 by vascular

land plants would have increased the O2/CO2

ratio in the atmosphere, which has been shown
to impact plant metabolism and change the frac-
tionation between plant tissue produced via
photosynthesis and atmospheric CO2 (Farquhar
et al., 1982; Strauss & Peters-Kottig, 2003). The
change in the O2/CO2 ratio has been discussed
as a possible proxy for atmospheric composition
over geological time (Beerling & Berner, 2000;
Berner et al., 2000; Beerling et al., 2002). Such
metabolic changes and subsequent shifts
towards more positive organic d13C values in ter-
restrial plants during this time period would
have imparted more positive d13C values on both

Fig. 7. Correlations between Sequence II carbonate and organic d13C values from each outcrop along the proximal
to distal transect (BM, Benbow Mine Road; FC, Freemont Canyon; SM, Sheep Mountain; WRC, Wind River
Canyon).
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the atmosphere and DIC in the surface waters of
the ocean. Therefore, the global shift towards
more positive d13C values recorded in the Madi-
son Limestone and its age equivalents was a
function of two compounding factors: (i) the
enhanced burial of organic matter in the terres-
trial realm would have shifted the d13C value of
the atmosphere towards more positive values;
and (ii) the change in the d13C value of the ter-
restrial organic matter itself towards more posi-
tive values would have acted to further enhance
the positive shift in the d13C values of the mar-
ine carbonates precipitated in equilibrium with
the DIC pool during this perturbation.
Therefore, this multi-proxy evaluation of the

largest Phanerozoic positive excursion in bulk
carbonate d13C values provides support for the
interpretation that the large positive shift in car-
bonate d13C values in the Early Mississippian
reflected a perturbation to the global carbon cycle,
rather than a local or diagenetic effect. As previ-
ously described, the change in bulk carbonate
d13C values occurs simultaneously worldwide; in
each of the outcrops in the western US (Mii et al.,
1999; Gill et al., 2007; Katz et al., 2007; Koch
et al., 2014) to the Dinant Basin (Belgium; Saltz-
man et al., 2004) and the Ural Mountains (Saltz-
man et al., 2004). This worldwide perturbation
requires a global driver that probably affected the
atmospheric reservoir of CO2. In addition to the
carbonate record of bulk d13C values, trends in
organic d13C values at each of the study locations
supports the introduction of terrestrial organic
carbon to the marine realm with the onset of the
transgression, peaking in most locations at the
maximum flooding surface of Sequence II (Figs 3
to 6). Part of this increase is attributable to mixing
between terrestrial and marine organic matter
through time, accompanied by an increase in the
isotopic composition of the DIC.
Source mixing, or in this case, increased con-

tributions of terrestrial organic carbon, is postu-
lated to influence the organic d13C values. The
isotopic difference between marine and terres-
trial organic matter (Hayes et al., 1999; Strauss
& Peters-Kottig, 2003) sets up a two end-member
mixing, where increases in the bulk organic mat-
ter d13C values may be caused by increased con-
tributions of terrestrially derived organic matter.
Such syndepositional, two end-member mixing,
has been observed in Pleistocene records of bulk
carbonate and organic d13C values from the
slope of the Great Bahama Bank, where sea-level
oscillations controlled the contributions of iso-
topically positive, platform-derived carbonate

and organic matter with pelagic carbonates and
organic carbon with comparatively more nega-
tive d13C values (Oehlert et al., 2012). Further-
more, the average d13C values of the sedimentary
organic matter become increasingly more posi-
tive proximal to the transcontinental arch for
Sequence II, suggesting that terrestrial organic
carbon is present in higher abundances in Free-
mont Canyon (�23�6&; Fig. 2) than in Benbow
Mine Road (�26�1&; Fig. 6). In addition to the
organic d13C values, the spread of vascular land
plants is also supported by the trends in the
insoluble materials in the transect of outcrops,
likely to result from enhanced weathering by
land plants (Igamberdiev & Lea, 2006). Peaks in
insoluble materials were observed to be associ-
ated with the maximum flooding surface at each
of the outcrops and the highest average concen-
tration of insoluble materials was consistently
observed within Sequence II (Table 1; Figs 3 to
6). These increases in the concentration of insol-
uble materials occur concurrently with the
increase in the organic d13C values, which is
thought to be related to the introduction of ter-
restrial organic matter. The simultaneous depo-
sition of increased terrestrial–insoluble materials
and organic carbon linked by the maximum
flooding surface supports the colonization of the
Transcontinental Arch by terrestrial plants
which enhanced weathering on land.

No geochemical evidence for anoxia during
deposition of the Madison Limestone
A correlation between d34SCAS and bulk carbonate
d13C values has been interpreted as evidence of
anoxia (Jenkyns, 2010). However, in the Madison
sections, the d34SCAS values exhibit very different
behaviours at each location, suggesting that in
some of the locations local environmental factors
may have been important in governing the
d34SCAS values. Diagenetic alteration has been
shown to alter the concentration of CAS, while
maintaining the original d34SCAS values (Gill
et al., 2011; Fichtner et al., 2017), and therefore,
the d34SCAS records are interpreted to reflect
changes in the contemporaneous sulphur cycle.
The d34SCAS values from the most proximal loca-
tion, Freemont Canyon (Fig. 3), exhibit a negative
excursion at the maximum flooding surface, sug-
gesting that freshwater run off and weathered
materials from the Transcontinental Arch proba-
bly caused the seawater d34SCAS signature to be
overwhelmed by the d34SCAS value of weathered
terrestrial sulphide minerals or even degrading
coals. Previous work shows that the average d34S
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composition of average sedimentary sulphides for
the Palaeozoic exhibits a trend from 0& around
500 Ma, to nearly �30& (V-CDT) at the Permo–
Triassic Boundary 252 Ma (Canfield & Kump,
2013). In addition, organic sulphur during this
time was depleted in 34S relative to contempora-
neous seawater values (Canfield & Kump, 2013),
suggesting that weathering of sulphide minerals
or from weathering of organic matter during the
deposition of the Madison Limestone could have
contributed to the negative shifts in d34SCAS

observed at Wind River Canyon and Freemont
Canyon in the transgressive portion of Sequence
II (Figs 3 and 4).
The d34SCAS values in the regressive phase of

Sequence II at Freemont Canyon and Wind
River Canyon exhibit different behaviours. The
d34SCAS values from Freemont Canyon spike to
more positive values in this regressive phase,
while d34SCAS values from Wind River Canyon
remain persistently low. The differences in
behaviour between the two proximal sites could
be attributed to small sulphate reservoirs, or to
weathering of older continental evaporites
which contribute only to the d34S values at Free-
mont Canyon as a result of proximity. From a
mass-balance perspective, locally small sulphate
reservoirs would be more sensitive to changes in
the rate or isotopic composition of different
fluxes into the shallow marine environment,
thus producing more variable d34SCAS values. In
contrast to previous work which suggested that
the size of the sulphate reservoir increased prior
to deposition of the Madison Limestone (Gill
et al., 2007), these results suggest that, at least
in the case of the proximal ramp setting, the sul-
phate reservoir may have been small and thus
susceptible to change via weathering input.
Evaporite deposits have been documented

from the Middle Ordovician through to the
Tournaisian in regions around the Transconti-
nental Arch and the Williston Basin, and
describe depositional environments ranging from
sabkha-type environments to evaporite–solution
breccias (Johnson, 1992). Mapping of evaporitic
facies in the time-equivalent Ballagan Formation
in Nova Scotia and Scotland shows the presence
of gypsum nodules in siltstone, dolostone with
gypsum and halite in seven of the eight studied
sections in depositional environments described
as coastal tropical wetlands (Millward et al.,
2018). The observation of evaporites around the
globe during this period demonstrates that eva-
porite deposition during this period was not a
locally restricted phenomenon, and is likely to

reflect conducive palaeoclimatic conditions
(Millward et al., 2018).
In contrast to proximal locations, Sheep Moun-

tain and Benbow Mine Road exhibit positive
changes in d34SCAS values within Sequence II
(Figs 5 and 6). This is interpreted to reflect a
more open and larger sulphate reservoir when
compared to the more restricted environments at
Freemont Canyon and Wind River Canyon. Posi-
tive excursions in d34SCAS values that co-occur
with positive changes in carbonate d13C values
have been interpreted to result from periods of
water-column anoxia (Jenkyns, 2010). However,
the correlation coefficients between bulk carbon-
ate d13C and d34SCAS values from this study are
not consistent with the interpretation of a period
of anoxia. The strongest positive correlation
occurs at Sheep Mountain (r2 = 0�59, P < 0�05,
n = 27), while there is no statistical correlation
between bulk carbonate d13C and d34SCAS values
at Benbow Mine Road (r2 = 0�23, P > 0�05,
n = 55). The lack of a statistically significant pos-
itive correlation this site suggests that these two
locations are not recording a period of anoxia,
since both locations are not recording the classic
coupled response of the bulk carbonate d13C and
d34SCAS values (Jenkyns, 2010). Similar to previ-
ously measured d34SCAS values from a section,
including the excursion in bulk carbonate d13C
values at the Kinderhookian–Osagean (Gill et al.,
2007), the d34SCAS values from Benbow Mine
Road are relatively invariant. Furthermore, sedi-
mentological evidence of anoxia, including the
deposition and preservation of black organic-rich
mudrock has not been observed in these outcrops
(Katz et al., 2007; Buoniconti, 2008; Katz, 2008).
Since recent studies have shown that the d34SCAS

values of both recent (Gill et al., 2008) and Trias-
sic carbonates (Fichtner et al., 2017) are main-
tained during diagenesis, other controls on
variability in the d34SCAS values, such as fresh-
water runoff and contributions of sulphate from
terrestrial evaporites, are considered as possible
mechanisms driving the variability in d34SCAS

values observed in the Madison Limestone out-
crops presented in this study.
The observation that carbonate d13C and

d34SCAS values are positively correlated at Sheep
Mountain and decoupled at Benbow Mine Road
requires additional consideration. Previous work-
ers have pointed out that carbon and sulphur
have different residence times in the ocean
(Kampschulte et al., 2001; Jones & Fike, 2013,
Turchyn & Schrag, 2004), with carbon having a
two-order of magnitude smaller residence time in
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the oceans than sulphur (Walker, 1986). As a
result, perturbations in the carbon cycle may
occur without coupled d34S responses (Kump &
Garrels, 1986) or with a temporal lag (Jones &
Fike, 2013) leading to a lack of statistically signifi-
cant correlation between coeval carbonate d13C
and d34SCAS records. Analysis of the sedimentary
pyrite d34S records could provide important
insight into the mechanisms controlling the lack
of correlation between carbonate d13C and
d34SCAS records observed at Benbow Mine Road,
contrasted with the high degree of correlation
documented in samples from Sheep Mountain.
Another possible explanation includes the pro-
gressive decoupling of the carbon–sulphur sys-
tem throughout the Palaeozoic resulting from
increasing concentrations of seawater sulphate,
which make the oceans less sensitive to changes
in flux (Gill et al., 2007). An alterative explana-
tion could also be that substantial organic carbon
burial in the terrestrial realm perturbed the car-
bon cycle, but a lack of coupled pyrite burial pre-
vented such a perturbation from affecting the
sulphur cycle (Gill et al., 2007). This observation
is consistent with the conclusions herein, which
suggest that the perturbation driving the positive
shift in carbonate d13C values during Sequence II
is driven by enhanced organic carbon burial on
land.

The role of sea-level transgression
Another proposed mechanism for the change in
bulk carbonate d13C values is the large marine
transgression (Sonnenfeld, 1996; Smith et al.,
2004) observed in Sequence II and the associated
increase in productivity (Katz et al., 2007). How-
ever, although the sea-level transgression observed
in Sequence II had significant impacts on the sedi-
mentology, stratigraphy and transport of terres-
trial-derived materials (Katz et al., 2007), the
results of this study suggest that a transgression
alone could not have initiated the large positive
shift in bulk carbonate d13C values. Furthermore,
within the context of geological time, sea-level
transgressions are relatively common, while
changes in the bulk carbonate d13C values of this
magnitude do not occur frequently.
The organic d13C values from each of the four

locations demonstrate changes towards more
positive values during the transgressive phase of
Sequence II, a change interpreted to reflect
increasing contributions of terrestrial organic
material with more positive organic d13C values
(Figs 3 to 6). Peaks in insoluble materials are
also observed at the maximum flooding surface

associated with Sequence II at Freemont Canyon
and Wind River Canyon (Figs 3 and 4), as well
as an increase in the abundance of argillaceous
materials in the Sheep Mountain Anticline
(Fig. 4; Sonnenfeld, 1996). It is therefore possible
that the introduction of insoluble materials dur-
ing this transgression increased nutrient avail-
ability and provided for enhanced marine
productivity during the regression. The trend of
persistently positive organic d13C values observed
in the Sequence II regressive phase suggests that a
period of increased productivity may have con-
tributed to the sustained positive organic d13C
values (Figs 3 to 6). Evidence for enhanced pro-
ductivity may also be seen in the increased aver-
age TOC compositions observed in the regressive
portion of Sequence II compared to the transgres-
sive portions of Sequence II.

Decoupled mechanisms for the changes in
carbonate and organic d13C values
One of the most interesting results in this study
is the correlation between the bulk carbonate
d13C values published by Katz et al. (2007) and
the organic d13C values in this paper (Fig. 7).
Statistically significant correlations are observed
at each outcrop, although with relatively low r2

values, which range from 0�11, (P < 0�05) at both
the middle ramp setting (Wind River Canyon,
n = 97) and the 0�13 at the most distal setting
(Benbow Mine Road, n = 162), (P < 0�05) at the
most proximal setting (Freemont Canyon,
n = 97). The highest observed correlation
between bulk carbonate and organic d13C values
is observed at Sheep Mountain (r2 = 0�25,
P < 0�05, n = 224). Many studies would inter-
pret a significant correlation as evidence that the
change in bulk carbonate d13C values was defini-
tively the result of a perturbation to the global
carbon cycle. However, this requires the
assumption that an equal shift in the bulk car-
bonate and organic d13C values is observed, and
that these paired shifts were the result of a
change in the d13C composition of the DIC.
In the case of the Madison Limestone, the rel-

atively low r2 values and the nature of the strati-
graphic relationship between the bulk carbonate
and organic d13C values suggests that it is unli-
kely that the mechanism that caused the posi-
tive changes in the bulk carbonate d13C values
was also the primary driver for the changes in
organic d13C values. A more likely explanation
is that the bulk carbonate and organic d13C val-
ues are controlled by separate factors that fortu-
itously generated positive excursions at the

© 2018 The Authors. Sedimentology © 2018 International Association of Sedimentologists, Sedimentology, 66, 241–261

256 A. M. Oehlert et al.



same time within Sequence II. The bulk carbon-
ate d13C values are interpreted to be controlled
by a large change in the d13C value of the con-
temporaneous marine DIC resulting from a per-
turbation to the global carbon cycle driven by
the evolution and proliferation of vascular land
plants and increased organic matter (OM) burial
in wetlands.
In contrast, the organic d13C values are inter-

preted to be controlled primarily by changes in
the proportion of organic matter derived from
the terrestrial realm during the transgressive
portion of Sequence II. Records of the percent
insoluble material preserved in the samples pro-
vide support for this interpretation (Figs 3 to 6).
Peaks in the insoluble material are observed in
the transgressive phase of Sequence II, suggest-
ing that large amounts of weathered materials
were transported from the Transcontinental
Arch to the adjacent shallow carbonate ramp.
During the regressive phase of the sequence,
these additional weathered materials probably
acted to relieve a nutrient limitation, increasing
marine organic matter productivity in the near-
shore waters. This interpretation is further sup-
ported by the record of organic d13C values from
these outcrops (Figs 3 to 6).
The transgressive portion of Sequence II is

associated with an increase in the organic d13C
values that peaks at the maximum flooding sur-
face at each location, followed by sustained pos-
itive organic d13C values that persist even while
bulk carbonate d13C values fall back towards
pre-excursion values. The initial increase in
organic d13C values during the transgressive
phase is interpreted to reflect an increasing pro-
portion of terrestrial organic carbon that was
mobilized by ravinement erosion and released
into the marine realm. In contrast to the Ceno-
zoic and Mesozoic, when marine organic matter
typically contains more 13C than contemporane-
ous marine organic matter, trends in the isotopic
composition of Mississippian are the inverse,
where terrestrial organic carbon (�21 to �23&)
is enriched in 13C relative to the marine organic
matter (�26 to �28&; Hayes et al., 1999; Peters-
Kottig et al., 2006). Therefore, as the transgres-
sion progressed to the maximum flooding sur-
face, the proportion of terrestrial organic carbon
would reach a peak. Similar what has been
observed in the modern Great Bahama Bank,
mixing of two isotopically distinct sources of
organic carbon can produce changes in the
organic d13C values of sedimentary organic

matter that is related to sea-level oscillations
and not to a perturbation to the global carbon
cycle (Oehlert et al., 2012).
The persistent positive organic d13C values in

the regressive phase of Sequence II are attributed
to the enhanced rates of productivity caused by
the input of terrestrially derived nutrients. Fur-
thermore, terrestrial organic matter is more resis-
tant to degradation reactions (Hatch & Leventhal,
1997; Prahl et al., 1997; Freudenthal et al.,
2001), causing the preferential preservation of
sedimentary organic matter with more positive
d13C values during this time period compared to
sections with a higher proportion of marine
organic matter. These weathered materials, intro-
duced during the time of maximum flooding,
essentially fertilized the productivity of this
shallow marine ramp, resulting in increased
rates of organic carbon production that reduced
the fractionation between DIC and organic car-
bon. It is unlikely that these persistently high
organic d13C values are caused by contributions
of terrestrial organic carbon during the regressive
phase, because the proportions of insoluble
materials are much lower, suggesting that terres-
trial material, either terrestrial organic matter or
weathered nutrients, did not reach the middle
ramp during the regressive phase of Sequence II.
While bulk carbonate and organic d13C values

change towards more positive values in the
transgressive portion of Sequence II, the records
and the mechanisms that drive their d13C values
become decoupled during the regressive phase.
This observation demonstrates the lack of a uni-
fied driving mechanism, such as changes in glo-
bal carbon cycling as the cause of the positive
change. When bulk carbonate d13C values begin
to decrease towards pre-excursion values imme-
diately after the maximum flooding surface, the
organic d13C values remain persistently positive
compared to early values (Figs 3 to 6). While the
perturbation to the global carbon cycle dramati-
cally changed the d13C value of the marine DIC,
this decoupling of the carbonate and organic
d13C values suggests that other factors played a
more significant role in generating the d13C
value of the marine organic matter. This is a
rather surprising finding because it means that a
perturbation to the global carbon cycle that was
substantial enough to produce one of the largest
positive excursions in Phanerozoic bulk carbon-
ate d13C values did not exert an overriding con-
trol on the d13C values of the co-occurring
sedimentary organic matter.
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Implications for chemostratigraphy

The observation that one of the largest perturba-
tions to the Phanerozoic carbon cycle was not
capable of generating strongly correlated records
of carbonate and organic d13C values is an impor-
tant new consideration for interpretations of
such covariance. In concert with other published
studies investigating the significance of covari-
ance in both modern and ancient depositional
environments, the results of this study highlight
the importance of a thorough characterization of
the sediment and organic matter sources, sedi-
mentation pathways, sequence stratigraphy and
sea-level history, diagenetic history, evolutionary
events, the possibility of both syndepositional
and post-depositional mixing, organic matter
recycling and spatial geochemical gradients
when making accurate interpretations of the sig-
nificance of shifts in carbonate d13C values and
creating chemostratigraphic correlations (John-
ston et al., 2012; Oehlert et al., 2012; Lee et al.,
2013; Oehlert & Swart, 2014; Wang et al., 2016;
Swart & Oehlert, 2018).

CONCLUSIONS

The amplitude of the excursion in Lower Missis-
sippian bulk carbonate d13C values observed in
the Madison Limestone suggests a change in the
global carbon cycle that requires a unique set of
environmental conditions and initiation mecha-
nisms, so that such a large change in bulk carbon-
ate d13C values is not observed in the Phanerozoic
after this time period. The fact that the positive
excursion in bulk carbonate d13C values is
observed in marine carbonates both regionally
(Saltzman, 2002; Gill et al., 2011; Koch et al.,
2014) and around the world (Berner & Raiswell,
1983; Berner, 1990; Berner & Petsch, 1998; Saltz-
man, 2002; Saltzman et al., 2004) is consistent
with the interpretation that points to a perturba-
tion to the global carbon cycle, rather than local
or post-depositional processes. In this case, the
evolution of vascular land plants is interpreted to
be the driver for one of the largest Phanerozoic
positive excursions in carbonate d13C values.
Furthermore, these results suggest that the

evolution of this new terrestrial sink in the glo-
bal carbon budget and its impact on the global
carbon cycle might have been locally amplified
within the Madison Limestone by a global sea-
level rise (Katz et al., 2007), as well as the intro-
duction of weathering products to relieve

nutrient limitation by the local tectonic uplift of
the Antler Foreland (Saltzman et al., 2000). In
contrast, persistently positive organic d13C val-
ues coupled with increased concentrations of
acid-insoluble material in the regressive section
of Sequence II support the interpretation that
the introduction of terrestrial materials played
an important role in generating the geochemical
records observed in Madison Limestone.
The proliferation of vascular plants in the Car-

boniferous not only destabilized the global car-
bon cycle, but also played an important role in
the weathering of terrestrial materials, and con-
tributed isotopically distinct organic matter to
the marine environment. When mixed with mar-
ine organic matter, terrestrial organic material
provides a 13C enriched end-member and creates
a two end-member mixing system in the Lower
Mississippian. Although the mechanisms that
drove the transition towards more positive
organic and bulk carbonate d13C values are
related to the evolution of vascular land plants,
the two records remain unpaired through one of
the largest excursions in carbonate d13C values
in the Phanerozoic. These results lead to a sig-
nificant theoretical debate: if this unique evolu-
tionary perturbation could not generate coupled
responses in the carbonate and organic d13C
values, what type of event would?
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