980 research outputs found
Airspace Technology Demonstration 3 (ATD-3): Dynamic Routes for Arrivals in Weather (DRAW) Technology Transfer Document Summary Version 2.0
Airspace Technology Demonstration 3 (ATD-3) is part of NASAs Airspace Operations and Safety Program (AOSP) specifically, its Airspace Technology Demonstrations (ATD) Project. ATD-3 is a multi-year research and development effort which proposes to develop and demonstrate automation technologies and operating concepts that enable air navigation service providers and airspace users to continuously assess weather, winds, traffic, and other information to identify, evaluate, and implement workable opportunities for flight plan route corrections that can result in significant flight time and fuel savings in en route airspace. In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders. This summary document and accompanying technology artifacts satisfy the third Research Transition Product (RTP) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan, which is Dynamic Routes for Arrivals in Weather (DRAW). This technology transfer consists of artifacts for DRAW Arrival Metering (AM) Operations delivered in June 2018, DRAW AM updates, and DRAW Extended Metering (XM) Operations. Blue highlighting indicates the new or modified deliverables. Some of the artifacts in this technology transfer have distribution restrictions that need to be followed. Distribution information is noted in each section. DRAW is a trajectory-based system that combines the legacy Dynamic Weather Routes (DWR) weather avoidance technology with an arrival-specific rerouting algorithm and arrival scheduler to improve traffic flows on weather-impacted arrival routes into major airports. First, DRAW identifies flights that could be rerouted to more efficient Standard Terminal Arrival Routes (STARs) that may have previously been impacted by weather. Second, when weather is impacting the arrival routing, DRAW proposes simple arrival route corrections that enable aircraft to stay on their flight plan while avoiding weather. The DRAW system proposes reroutes early enough to allow Time Based Flow Management (TBFM) to make the necessary schedule adjustments. As a result, metering operations can be sustained longer and more consistently in the presence of weather because the arrival schedule accounts for the dynamic routing intent of arrival flights to deviate around weather. The first DRAW tech transfer in June 2018 focused on arrival metering operations with the DRAW algorithm implemented in the NASA Center TRACON Automation System (CTAS) automation software. This tech transfer delivery includes updates for DRAW implemented in FAAs TBFM 4.7 automation software and preliminary research into DRAW for XM operations
Airspace Technology Demonstration 3 (ATD-3) Traffic Aware Strategic Aircrew Requests (TASAR) Technology Transfer Document Summary Version 1.0
This summary document and accompanying technology artifacts satisfy the fourth of five Research Transition Products (RTPs) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASA's Traffic Aware Strategic Aircrew Requests (TASAR). NASA's concept of TASAR offers onboard automation for the purpose of advising the pilot of traffic-compatible trajectory changes that would be beneficial to the flight
Airspace Technology Demonstration 3 (ATD-3): Dynamic Routes for Arrivals in Weather (DRAW) Technology Transfer Document Summary Version 1.0
Airspace Technology Demonstration 3 (ATD-3) is part of NASAs Airspace Operations and Safety Program (AOSP) specifically, its Airspace Technology Demonstrations (ATD) Project. ATD-3 is a multi-year research and development effort which proposes to develop and demonstrate automation technologies and operating concepts that enable air navigation service providers and airspace users to continuously assess weather, winds, traffic, and other information to identify, evaluate, and implement workable opportunities for flight plan route corrections that can result in significant flight time and fuel savings in en route airspace. In order to ensure that the products of this tech-transfer are relevant and useful, NASA has created strong partnerships with the FAA and key industry stakeholders. This summary document and accompanying technology artifacts satisfy the third of three Research Transition Products (RTPs) defined in the Applied Traffic Flow Management (ATFM) Research Transition Team (RTT) Plan. This transfer consists of NASAs Dynamic Routes for Arrivals in Weather (DRAW) Arrival Metering Operations. This research enables continued use of arrival metering operations while efficiently rerouting traffic in weathe
High Repetition-Rate Wakefield Electron Source Generated by Few-millijoule, 30 femtosecond Laser Pulses on a Density Downramp
We report on an experimental demonstration of laser wakefield electron
acceleration using a sub-TW power laser by tightly focusing 30-fs laser pulses
with only 8 mJ pulse energy on a 100 \mu m scale gas target. The experiments
are carried out at an unprecedented 0.5 kHz repetition rate, allowing "real
time" optimization of accelerator parameters. Well-collimated and stable
electron beams with a quasi-monoenergetic peak in excess of 100 keV are
measured. Particle-in-cell simulations show excellent agreement with the
experimental results and suggest an acceleration mechanism based on electron
trapping on the density downramp, due to the time varying phase velocity of the
plasma waves.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let
Supporting researchers conducting qualitative research into sensitive, challenging, and difficult topics: Experiences and practical applications.
Qualitative researchers often engage in work addressing challenging, difficult, or sensitive topics and are consequently exposed to the participants’ narratives which may be emotionally charged, distressing, or compromising. These narratives occasionally rest heavy on a researcher’s conscience or may linger in the mind. Much literature has assessed how best to keep participants safe, but less attention has been given to how we keep researchers safe. We therefore document the following: (1) Our experiences of the issues presented by undertaking qualitative research involving challenging, difficult, or sensitive topics; and (2) Practical principles devised to overcome these issues, ensuring safety and wellbeing amongst researchers engaging in these types of qualitative research. We provide guidance for qualitative researchers of all levels of experience and expertise on how best to protect and support themselves, their colleagues, and other collaborating research staff, when undertaking qualitative research which might otherwise feel uncomfortable or overwhelming to tackle
An AeroCom initial assessment – optical properties in aerosol component modules of global models
The AeroCom exercise diagnoses multi-component aerosol modules in global modeling. In an initial assessment simulated global distributions for mass and mid-visible aerosol optical thickness (aot) were compared among 20 different modules. Model diversity was also explored in the context of previous comparisons. For the component combined aot general agreement has improved for the annual global mean. At 0.11 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca. 0.135) and space (satellite composite ca. 0.15). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture remain. Of particular concern are large model diversities for contributions by dust and carbonaceous aerosol, because they lead to significant uncertainty in aerosol absorption (aab). Since aot and aab, both, influence the aerosol impact on the radiative energy-balance, the aerosol (direct) forcing uncertainty in modeling is larger than differences in aot might suggest. New diagnostic approaches are proposed to trace model differences in terms of aerosol processing and transport: These include the prescription of common input (e.g. amount, size and injection of aerosol component emissions) and the use of observational capabilities from ground (e.g. measurements networks) or space (e.g. correlations between aerosol and clouds)
Analysis and quantification of the diversities of aerosol life cycles within AeroCom
Simulation results of global aerosol models have been assembled in the framework of the AeroCom intercomparison exercise. In this paper, we analyze the life cycles of dust, sea salt, sulfate, black carbon and particulate organic matter as simulated by sixteen global aerosol models. The diversities among the models for the sources and sinks, burdens, particle sizes, water uptakes, and spatial dispersals have been established. These diversities have large consequences for the calculated radiative forcing and the aerosol concentrations at the surface.
The AeroCom all-models-average emissions are dominated by the mass of sea salt (SS), followed by dust (DU), sulfate (SO_4), particulate organic matter (POM), and finally black carbon (BC). Interactive parameterizations of the emissions and contrasting particles sizes of SS and DU lead generally to higher diversities of these species, and for total aerosol. The lower diversity of the emissions of the fine aerosols, BC, POM, and SO_4, is due to the use of similar emission inventories, and does therefore not necessarily indicate a better understanding of their sources. The diversity of SO_4-sources is mainly caused by the disagreement on depositional loss of precursor gases and on chemical production. The diversities of the emissions are passed on to the burdens, but the latter are also strongly affected by the model-specific treatments of transport and aerosol processes. The burdens of dry masses decrease from largest to smallest: DU, SS, SO_4, POM, and BC.
The all-models-average residence time is shortest for SS with about half a day, followed by S_O4 and DU with four days, and POM and BC with six and seven days, respectively. The wet deposition rate is controlled by the solubility and increases from DU, BC, POM to SO_4 and SS. It is the dominant sink for SO_4, BC, and POM, and contributes about one third to the total removal rate coefficients of SS and DU species. For SS and DU we find high diversities for the removal rate coefficients and deposition pathways. Models do neither agree on the split between wet and dry deposition, nor on that between sedimentation and turbulent dry Deposition. We diagnose an extremely high diversity for the uptake of ambient water vapor that influences the particle size and thus the sink rate coefficients. Furthermore, we find little agreement among the model results for the partitioning of wet removal into scavenging by convective and stratiform rain.
Large differences exist for aerosol dispersal both in the vertical and in the horizontal direction. In some models, a minimum of total aerosol concentration is simulated at the surface. Aerosol dispersal is most pronounced for SO4 and BC and lowest for SS. Diversities are higher for meridional than for vertical dispersal, they are similar for a given species and highest for SS and DU. For these two components we do not find a correlation between vertical and meridional aerosol dispersal. In addition the degree of dispersals of SS and DU is not related to their residence times. SO_4, BC, and POM, however, show increased meridional dispersal in models with larger vertical dispersal, and dispersal is larger for longer simulated residence times
Modulation of cell proliferation in the embryonic retina of zebrafish ( Danio rerio )
We describe light-microscopically the development of the embryonic zebrafish eye with particular attention to cell number, cell proliferation, and cell death. The period from 16 to 36 hr post fertilization (hpf) comprises two phases; during the first (16–27 hpf) the optic vesicle becomes the eye cup, and during the second (27–36 hpf) the eye cup begins to differentiate into the neural retina and pigmented epithelium. All cells in the eye primordium are proliferative prior to 28 hpf, and the length of the cell cycle has been estimated to be 10 hr at 24–28 hpf (Nawrocki, 1985 ). Our cell counts are consistent with that estimate at that age, but not at earlier ages. A 10-hr cell cycle predicts that the cell number should increase by 7% per hr, but during 16–24 hpf the cell number increased by only 1.5% per hr. Despite the low rate of increase, all cells labeled with bromo-deoxyuridine, so all were proliferative. We considered three possible explanations for the nearly-constant cell number in the first phase: proliferation balanced by cell emigration from the eye, proliferation balanced by cell death, and low proliferation caused by a transient prolongation of the cell cycle. We excluded the first two, and found direct support for the third. Previous examinations of the cell cycle length in vertebrate central nervous system have concluded that it increases monotonically, in contrast to the modulation that we have shown. Modulation of the cell cycle length is well-known in flies, but it is generally effected by a prolonged arrest at one phase, in contrast to the general deceleration that we have shown. © 2000 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35168/1/1063_ftp.pd
- …