52 research outputs found

    Importin 13-dependent axon diameter growth regulates conduction speeds along myelinated CNS axons

    Get PDF
    Axon diameter influences the conduction properties of myelinated axons, both directly, and indirectly through effects on myelin. However, we have limited understanding of mechanisms controlling axon diameter growth in the central nervous system, preventing systematic dissection of how manipulating diameter affects myelination and conduction along individual axons. Here we establish zebrafish to study axon diameter. We find that importin 13b is required for axon diameter growth, but does not affect cell body size or axon length. Using neuron-specific ipo13b mutants, we assess how reduced axon diameter affects myelination and conduction, and find no changes to myelin thickness, precision of action potential propagation, or ability to sustain high frequency firing. However, increases in conduction speed that occur along single myelinated axons with development are tightly linked to their growth in diameter. This suggests that axon diameter growth is a major driver of increases in conduction speeds along myelinated axons over time.<br/

    Neuronal activity disrupts myelinated axon integrity in the absence of NKCC1b

    Get PDF
    Through a genetic screen in zebrafish, we identified a mutant with disruption to myelin in both the CNS and PNS caused by a mutation in a previously uncharacterized gene, slc12a2b, predicted to encode a Na+, K+, and Cl− (NKCC) cotransporter, NKCC1b. slc12a2b/NKCC1b mutants exhibited a severe and progressive pathology in the PNS, characterized by dysmyelination and swelling of the periaxonal space at the axon–myelin interface. Cell-type–specific loss of slc12a2b/NKCC1b in either neurons or myelinating Schwann cells recapitulated these pathologies. Given that NKCC1 is critical for ion homeostasis, we asked whether the disruption to myelinated axons in slc12a2b/NKCC1b mutants is affected by neuronal activity. Strikingly, we found that blocking neuronal activity completely prevented and could even rescue the pathology in slc12a2b/NKCC1b mutants. Together, our data indicate that NKCC1b is required to maintain neuronal activity–related solute homeostasis at the axon–myelin interface, and the integrity of myelinated axons

    Phocine distemper Virus: Current knowledge and future directions

    Get PDF
    Phocine distemper virus (PDV) was first recognized in 1988 following a massive epidemic in harbor and grey seals in north-western Europe. Since then, the epidemiology of infection in North Atlantic and Arctic pinnipeds has been investigated. In the western North Atlantic endemic infection in harp and grey seals predates the European epidemic, with relatively small, localized mortality events occurring primarily in harbor seals. By contrast, PDV seems not to have become established in European harbor seals following the 1988 epidemic and a second event of similar magnitude and extent occurred in 2002. PDV is a distinct species within the Morbillivirus genus with minor sequence variation between outbreaks over time. There is now mounting evidence of PDV-like viruses in the North Pacific/Western Arctic with serological and molecular evidence of infection in pinnipeds and sea otters. However, despite the absence of associated mortality in the region, there is concern that the virus may infect the large Pacific harbor seal and northern elephant seal populations or the endangered Hawaiian monk seals. Here, we review the current state of knowledge on PDV with particular focus on developments in diagnostics, pathogenesis, immune response, vaccine development, phylogenetics and modeling over the past 20 years

    Competence in Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography, From Training Through Independent Practice.

    Get PDF
    BACKGROUND & AIMS: It is unclear whether participation in competency-based fellowship programs for endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) results in high-quality care in independent practice. We measured quality indicator (QI) adherence during the first year of independent practice among physicians who completed endoscopic training with a systematic assessment of competence. METHODS: We performed a prospective multicenter cohort study of invited participants from 62 training programs. In phase 1, 24 advanced endoscopy trainees (AETs), from 20 programs, were assessed using a validated competence assessment tool. We used a comprehensive data collection and reporting system to create learning curves using cumulative sum analysis that were shared with AETs and trainers quarterly. In phase 2, participating AETs entered data into a database pertaining to every EUS and ERCP examination during their first year of independent practice, anchored by key QIs. RESULTS: By the end of training, most AETs had achieved overall technical competence (EUS 91.7%, ERCP 73.9%) and cognitive competence (EUS 91.7%, ERCP 94.1%). In phase 2 of the study, 22 AETs (91.6%) participated and completed a median of 136 EUS examinations per AET and 116 ERCP examinations per AET. Most AETs met the performance thresholds for QIs in EUS (including 94.4% diagnostic rate of adequate samples and 83.8% diagnostic yield of malignancy in pancreatic masses) and ERCP (94.9% overall cannulation rate). CONCLUSIONS: In this prospective multicenter study, we found that although competence cannot be confirmed for all AETs at the end of training, most meet QI thresholds for EUS and ERCP at the end of their first year of independent practice. This finding affirms the effectiveness of training programs. Clinicaltrials.gov ID NCT02509416

    Competence in Endoscopic Ultrasound and Endoscopic Retrograde Cholangiopancreatography, From Training Through Independent Practice.

    Get PDF
    BACKGROUND & AIMS: It is unclear whether participation in competency-based fellowship programs for endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) results in high-quality care in independent practice. We measured quality indicator (QI) adherence during the first year of independent practice among physicians who completed endoscopic training with a systematic assessment of competence. METHODS: We performed a prospective multicenter cohort study of invited participants from 62 training programs. In phase 1, 24 advanced endoscopy trainees (AETs), from 20 programs, were assessed using a validated competence assessment tool. We used a comprehensive data collection and reporting system to create learning curves using cumulative sum analysis that were shared with AETs and trainers quarterly. In phase 2, participating AETs entered data into a database pertaining to every EUS and ERCP examination during their first year of independent practice, anchored by key QIs. RESULTS: By the end of training, most AETs had achieved overall technical competence (EUS 91.7%, ERCP 73.9%) and cognitive competence (EUS 91.7%, ERCP 94.1%). In phase 2 of the study, 22 AETs (91.6%) participated and completed a median of 136 EUS examinations per AET and 116 ERCP examinations per AET. Most AETs met the performance thresholds for QIs in EUS (including 94.4% diagnostic rate of adequate samples and 83.8% diagnostic yield of malignancy in pancreatic masses) and ERCP (94.9% overall cannulation rate). CONCLUSIONS: In this prospective multicenter study, we found that although competence cannot be confirmed for all AETs at the end of training, most meet QI thresholds for EUS and ERCP at the end of their first year of independent practice. This finding affirms the effectiveness of training programs. Clinicaltrials.gov ID NCT02509416

    Regeneration of myelin sheaths of normal length and thickness in the zebrafish CNS correlates with growth of axons in caliber

    Get PDF
    Demyelination is observed in numerous diseases of the central nervous system, including multiple sclerosis (MS). However, the endogenous regenerative process of remyelination can replace myelin lost in disease, and in various animal models. Unfortunately, the process of remyelination often fails, particularly with ageing. Even when remyelination occurs, it is characterised by the regeneration of myelin sheaths that are abnormally thin and short. This imperfect remyelination is likely to have implications for the restoration of normal circuit function and possibly the optimal metabolic support of axons. Here we describe a larval zebrafish model of demyelination and remyelination. We employ a drug-inducible cell ablation system with which we can consistently ablate 2/3rds of oligodendrocytes in the larval zebrafish spinal cord. This leads to a concomitant demyelination of 2/3rds of axons in the spinal cord, and an innate immune response over the same time period. We find restoration of the normal number of oligodendrocytes and robust remyelination approximately two weeks after induction of cell ablation, whereby myelinated axon number is restored to control levels. Remarkably, we find that myelin sheaths of normal length and thickness are regenerated during this time. Interestingly, we find that axons grow significantly in caliber during this period of remyelination. This suggests the possibility that the active growth of axons may stimulate the regeneration of myelin sheaths of normal dimensions

    The role of networks to overcome large-scale challenges in tomography : the non-clinical tomography users research network

    Get PDF
    Our ability to visualize and quantify the internal structures of objects via computed tomography (CT) has fundamentally transformed science. As tomographic tools have become more broadly accessible, researchers across diverse disciplines have embraced the ability to investigate the 3D structure-function relationships of an enormous array of items. Whether studying organismal biology, animal models for human health, iterative manufacturing techniques, experimental medical devices, engineering structures, geological and planetary samples, prehistoric artifacts, or fossilized organisms, computed tomography has led to extensive methodological and basic sciences advances and is now a core element in science, technology, engineering, and mathematics (STEM) research and outreach toolkits. Tomorrow's scientific progress is built upon today's innovations. In our data-rich world, this requires access not only to publications but also to supporting data. Reliance on proprietary technologies, combined with the varied objectives of diverse research groups, has resulted in a fragmented tomography-imaging landscape, one that is functional at the individual lab level yet lacks the standardization needed to support efficient and equitable exchange and reuse of data. Developing standards and pipelines for the creation of new and future data, which can also be applied to existing datasets is a challenge that becomes increasingly difficult as the amount and diversity of legacy data grows. Global networks of CT users have proved an effective approach to addressing this kind of multifaceted challenge across a range of fields. Here we describe ongoing efforts to address barriers to recently proposed FAIR (Findability, Accessibility, Interoperability, Reuse) and open science principles by assembling interested parties from research and education communities, industry, publishers, and data repositories to approach these issues jointly in a focused, efficient, and practical way. By outlining the benefits of networks, generally, and drawing on examples from efforts by the Non-Clinical Tomography Users Research Network (NoCTURN), specifically, we illustrate how standardization of data and metadata for reuse can foster interdisciplinary collaborations and create new opportunities for future-looking, large-scale data initiatives
    • …
    corecore