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SUMMARY
Drosophila provides a powerful model in which to study inflammation in vivo, and previous studies have re-
vealed many of the key signaling events critical for recruitment of immune cells to tissue damage. In the fly,
wounding stimulates the rapid production of hydrogen peroxide (H2O2).

1,2 This then acts as an activation
signal by triggering a signaling pathway within responding macrophages by directly activating the Src family
kinase (SFK) Src42A,3 which in turn phosphorylates the damage receptor Draper. Activated Draper then
guides macrophages to the wound through the detection of an as-yet unidentified chemoattractant.3–5

Similar H2O2-activated signaling pathways are also critical for leukocyte recruitment following wounding in
larval zebrafish,6–9 where H2O2 activates the SFK Lyn to drive neutrophil chemotaxis. In this study, we
combine proteomics, live imaging, and genetics in the fly to identify a novel regulator of inflammation in vivo;
the PTP-type phosphatase Pez. Pez is expressed inmacrophages and is critical for their efficientmigration to
wounds. Pez functions within activated macrophages downstream of damage-induced H2O2 and operates,
via its band 4.1 ezrin, radixin, and moesin (FERM) domain, together with Src42A and Draper to ensure effec-
tive inflammatory cell recruitment to wounds.We show that this key role is conserved in vertebrates, because
‘‘crispant’’ zebrafish larvae of the Draper ortholog (MEGF10) or the Pez ortholog (PTPN21) exhibit a failure in
leukocyte recruitment to wounds. This study demonstrates evolutionary conservation of inflammatory
signaling and identifies MEGF10 and PTPN21 as potential therapeutic targets for the treatment of inflamma-
tory disorders.
RESULTS AND DISCUSSION

To identify further components of theH2O2-Src42A-Draper inflam-

matory signaling axis inDrosophilamacrophages, we undertook a

phosphoproteomics approach to identify phosphoproteins regu-

lated downstream of H2O2 and Src42A. Control and src42A[E1]

mutant stage 15 embryos were disaggregated by crushing to

engageglobal inflammatorysignaling (FigureS1A).Disaggregation

was carried out both with or without catalase (to quench H2O2

signaling), and GFP-positive macrophages (srp-Gal4 driven up-

streamactivating sequence [UAS]-GFP)werecollectedbyfluores-

cence-activated cell sorting (FACS). The macrophage-specific

peptidesobtainedwere tandemmass tagged (TMT) labeled,phos-

pho-enriched, and identified by liquid chromatography-mass

spectrometry (Figure S1B). Finally, an organism-specific database

search was conducted to identify the peptides isolated (Figures

S1C–S1E). This revealed the protein tyrosine phosphatase (PTP)-

type phosphatase Pez as differentially phosphorylated in the pres-

enceof bothH2O2andSrc42A (FiguresS1EandS1F).Because the

ortholog of Pez (PTPN21) had previously been identified as an
Current Biology 31, 1–9, F
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interactor and regulator of SFK signaling in other contexts,10–12

we chose to investigate Pez in inflammatory cell migration.

To determine whether Pez is expressed in embryonic macro-

phages, we used Pez-Gal4 (P{GawB}PezNP4748) to drive UAS-

GFP and investigated GFP expression by immunofluorescence.

Co-labeling with anti-singed (a macrophage marker in

Drosophila)13 confirmed that Pez is expressed within macro-

phages at stage 15 of development (Figure S1G).We next sought

to determine whether Pez plays a role in normal macrophage

behavior using two independent Pez mutant lines (Figure 1A).

Following their specification from the head mesoderm, macro-

phages follow a stereotypical migration pattern to become

evenly distributed by the end of embryogenesis.14–16 This char-

acteristic developmental dispersal of macrophages in Pez

mutant embryos occurred normally, withmacrophages following

the expected dispersal routes at identical migratory speeds to

controls (Figures S1H and S1I; Video S1).

During this migration, macrophages actively clear develop-

mentally generated apoptotic corpses, which are identifiable in-

side GFP-expressing macrophages as fluorescent-negative
ebruary 22, 2021 ª 2020 The Authors. Published by Elsevier Inc. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Pez Is Required for Macrophage Migration to Epithelial Wounds and Functions within the H2O2-Src42A-Draper Signaling Pathway

(A) Pez locus highlighting mutant alleles. Approximate CB insertion (6.056 kb) site is indicated. Pez2 deletion is marked below, adapted from Poernbacher et al.17

(B) Live imaging of inflammation following laser ablation reveals reducedmacrophage recruitment inPezCBmutants.Woundmargin is denoted by dashed red line.

Cell tracks are shown at 1 h.

(C) Quantification reveals a significant decrease in macrophage numbers at wounds in the two Pez mutant lines at 40 and 60 min post-injury (n R 10 wounded

embryos/genotype; multiple t tests with Holm-Sidak multiple comparisons).

(legend continued on next page)
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Figure 2. The Role of Pez in Macrophage

Wound Recruitment Is Cell Autonomous

and Dependent upon the FERM Domain

(A) Macrophage-specific expression of Pez-RNAi

(TRiP constructs) impairs inflammatory recruit-

ment to wounds (images 1 h post-wounding).

Scale bars represent 10 mm. Wound margin is

denoted by dashed red line.

(B) Pez-RNAi significantly reduces macrophage

recruitment to wounds compared to control (n R

21 wounded embryos/genotype; Kruskal-Wallis

with Dunn’s multiple comparisons).

(C) Pez-sfGFP expression in macrophages (out-

lined in red) co-expressing either control RNAi or

either Pez-RNAi. Scale bars represent 10 mm.

(D) Both RNAi lines significantly reduce macro-

phage Pez-sfGFP intensity levels (n = 18 cells from

6 embryos/genotype; Kruskal-Wallis with Dunn’s

multiple comparisons).

(E) UAS-Pez expression constructs. FERM domain

and PTP domains noted and deletions depicted.

For phosphatase dead construct (UAS-PezDPD),

the mutated cysteine is noted. Adapted from Po-

ernbacher et al.17

(F) Images of wounded Pez2 embryos with

macrophage-specific expression of indicated Pez

constructs, 1 h post-ablation. Scale bar represents

20 mm. Wound margin is marked by dashed red

line.

(G) Macrophage-specific expression of UAS-Pez,

UAS-PezDPD, andUAS-PezDPTP (but not PezDFERM)

is sufficient to rescue Pez2 wound recruitment defect (n R 13 wounded embryos/genotype; one-way ANOVA with Dunnett’s multiple comparisons to Pez2).

(H) Quantification of meandering index reveals specific expression of Pez rescues the inflammatory chemotaxis of Pez2 macrophages (n R 42 cells from n R 5

wounded embryos/genotype; unpaired t test).

All error bars are mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.005, and ****p < 0.001. See also Figure S2 andVideo S4.
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vacuoles.18 Live imaging of Pez mutant macrophages at stage

15 revealed normal cell morphology, with cells displaying lamel-

lipodial protrusions and containing intracellular vacuoles (Fig-

ure S1J; Video S2). Quantification of vacuole numbers in Pez

mutant macrophages revealed no significant defect in their

phagocytic capability (Figure S1K). Finally, live imaging revealed

that, following the completion of their dispersal,Pezmutantmac-

rophages migrate at the same speed and in the same manner as

control cells (Figures S2A–S2C; Video S2). Together, this dem-

onstrates that Pez is dispensable for basal macrophage migra-

tion and function.

To investigate whether Pez plays a role in the inflammatory

recruitment of macrophages to wounds, we carried out live im-

aging following laser ablation. In control animals, this leads to

a rapid recruitment of macrophages to the wound site, with

numbers peaking 1 h after insult (Figures 1B and 1C). Macro-

phage counts 1 h post-injury (1 hpi) revealed a significant
(D and E) Cell tracking reveals (D)macrophage speed post-wounding is unaffected

test), and (E) meandering index is significantly reduced in responding (cells that

sponders from R5 embryos/genotype; Mann-Whitney U test).

(F) Heterozygote (src42A[E1]/+, draperD5/+, and PezCB/+) and transheterozygote

wounding. Wound margin is denoted by dashed red line.

(G) Significantly reducedmacrophagewound recruitment in transheterozygotes e

with multiple comparisons).

All error bars aremean ± SD. NS, not significant; *p < 0.05, **p < 0.01, ***p < 0.005,

S1, S2, and S3.
reduction in macrophage recruitment in both PezCB and Pez2

mutant embryos when compared to controls (Figures 1B and

1C). This was despite there being significantly more macro-

phages within Pez mutant embryos (Figure S2D). Importantly,

Pezmutant wounds closed at comparable rates to controls (Fig-

ure S2E). Interestingly, the Pez wound recruitment phenotype is

comparable to that observed following loss of Src42a

(Figure 1C).

To further investigate this inflammatory defect, PezCB mutant

macrophages were tracked following live imaging (Video S3).

This revealed that the reduction in the number of macrophages

present at wounds in PezCB mutants was not due to a slower in-

flammatory migration speed (Figure 1D) but due to a lower

meandering index in responding cells (Figure 1E). This corre-

sponded to a later arrival time and lower wound residency of

macrophages inPezCBmutants when compared to controls (Fig-

ures S2F and S2G).
inPezCBmutants (nR 130 cells fromR5 embryos/genotype;Mann-Whitney U

reach the wound site at any point within 2 h) PezCB macrophages (n = 53 re-

(src42A[E1]/PezCB and PezCB/+; draperD5/+) mutant embryos at 60 min post-

mbryos versus PezCB/+ (nR 15wounded embryos/genotype; one-way ANOVA

and ****p < 0.001. All scale bars represent 20 mm. See also Figure S2 and Videos

Current Biology 31, 1–9, February 22, 2021 3



Figure 3. Dynamic Pez Puncta Are Stimulated upon Wounding in a Draper-Dependent Manner

(A) Diagrams of fluorescently tagged Pez and Draper constructs. For Pez, the FERM and PTP domains are shown. For Draper, the N-terminal extracellular domain

is noted, along with the transmembrane domain (TM) and immunoreceptor tyrosine activation motif (ITAM).

(B) Pez forms puncta within the cell body and lamellipod. Dynamic lamellipodial puncta flow inward from the cell periphery (denoted by red line). Colored arrows

show puncta tracking over 1 min.

(legend continued on next page)
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Because we initially sought to identify novel interactors in the

H2O2/Src42A/Draper inflammatory signaling pathway and the

Pez phenotype is comparable to that of Src42a mutants and

consistent with a macrophage navigational defect, genetic inter-

action studies were employed to determine whether Pez lies

within the same signaling axis. We found no defect in macro-

phage recruitment to wounds made in heterozygous

src42A[E1]/+, draperD5/+, or PezCB/+ embryos. However,

wounds made to src42A[E1]/PezCB or PezCB/+; draperD5/+

embryos showed a significant reduction in the number of macro-

phages recruited at 1 hpi when compared to PezCB/+ heterozy-

gotes (Figures 1F and 1G). Taken together, these

data demonstrate that Pez is a novel component of the H2O2/

Src42A/Draper signaling pathway and drives macrophage

recruitment to wounds.

Because Pez is widely expressed in stage 15 embryos (Fig-

ure S1G), we next confirmed that the role of Pez in macrophage

wound recruitment was cell autonomous. To achieve this, we

used two macrophage-specific drivers (srp-gal4 and crq-gal4)

to express one of two Pez-specific RNAi constructs and quanti-

fied macrophage recruitment to wounds. Macrophage-specific

Pez RNAi led to a significant reduction in the number of macro-

phages at epithelial wounds at 1 hpi, demonstrating that Pez is

required within macrophages for effective chemotaxis (Figures

2A and 2B). These RNAi constructs were validated and were suf-

ficient to significantly reduce Pez protein levels in vivo (Figures

2C and 2D).

We next sought to investigate the mechanism by which Pez is

acting within chemotaxing macrophages. As well as a PTP

domain, Pez harbors an N-terminal FERM domain (Figure 2E). To

determine which domain of Pez is functional during macrophage

recruitment, we expressed truncated Pez constructs17 in macro-

phages alongside GFP in a Pez2 mutant background (Figures 2E

and2F).We re-expressed fourPezconstructs inPez2mutantmac-

rophages—full-length Pez (UAS-Pez), Pez lacking the FERM

domain (UAS-PezDFERM), Pez lacking the PTP domain (UAS-

PezDPTP), and a phosphatase-dead Pez construct (UAS-PezDPD).

As expected, macrophage-specific expression of the full-length

construct rescued both the wound recruitment and chemotaxis

defect seen at 1 hpi inPez2mutants (Figures 2F–2H). Interestingly,

expression of either of the phosphatase mutant constructs also

rescued the mutant phenotype (Figures 2F and 2G). However,

the ability of Pezmutant macrophages to migrate to wounds was
(C) Dynamic Draper-EGFP puncta (orange arrowheads) induced post-wounding.

(D) Kymographs of individual Pez-sfGFP and Draper-EGFP puncta (orange arrow

(E) Kymograph of Draper-EGFP punctum reveals colocalization with Pez-mCh fol

lamellipod leading edge (174 nm/pixel; 17.4 mm total). The y axes represent time

(F) Lamellipodial Pez-sfGFP puncta are suppressed in draperD5 and src42A[E1] m

(G and H) Puncta number (G) and distribution (cell body versus lamellipod; H) sign

Wallis with Dunn’s multiple comparisons and one-way ANOVA with Tukey’s com

(I) Images of control, draperD5, and src42A[E1] mutant macrophages (red outlines

(J and K) Analysis of Pez puncta 5 min post-wounding reveals (J) a wound-induce

Src42A (n R 6 cells from R5 embryos/genotype for each condition; Kruskal-W

increase in the proportion of puncta residing within the cell body of control cells

genotype for each condition; one-way ANOVA with Sidak’s multiple comparisons

bars represent 10 mm.

(L) Proposed role of Pez in wound-induced Draper clustering. Under basal con

mediated Src42A activation, phosphorylated Pez is recruited to Draper clusters via

coordinates inflammatory Draper signaling via effectors such as Shark, leading t

See also Figure S2 and Videos S5 and S6.
not restored following the expression ofUAS-PezDFERM—demon-

strating a specific requirement for the FERM domain of Pez in

drivingmacrophagewound recruitment (Figures 2F and 2G; Video

S4). Intriguingly, it is the FERM domain of the human Pez ortholog

PTPN21 that has been demonstrated to directly bind to Src family

kinases.12

As FERM domains are involved in protein localization,19 we

generated tagged UAS-Pez constructs to investigate Pez dy-

namics inmacrophages in vivo (Figure 3A). Macrophage-specific

expression of Pez-sfGFP was sufficient to rescue recruitment to

wounds in a Pez2 mutant (Figure S2H), and live imaging of Pez-

sfGFP-expressing macrophages revealed dynamic puncta that

formed within the lamellipod of macrophages before rapidly

shuttling back toward the cell body at a rate of 0.12 ± 0.01 mm/

s (Figure 3B). Upon wounding, this process was dramatically

stimulated in the lamellipods of macrophages undergoing in-

flammatory chemotaxis (Video S5), resulting in a transient pulse

of lamellipodial Pez puncta in macrophages within the vicinity of

the wound, which then collectively flowed into the cell body.

Draper has also been shown to cluster into mobile puncta in

Drosophila macrophage cell lines—a process that is proposed

to drive its activation cycle akin to the mammalian T cell recep-

tor.20 In order to investigate whether this occurs in vivo, we ex-

pressed Draper-EGFP in macrophages and visualized its locali-

zation through live imaging (Figure 3C). Limited Draper puncta

were observed under basal conditions within the cell body of

migrating macrophages. However, upon wounding, Draper

puncta were observed forming at the leading edge of the lamelli-

pod and flowing back toward the cell body (Figure 3D; Video

S6)—which was highly reminiscent of that observed with Pez-

sfGFP (Figures 3B and 3D). Co-expression of Draper-EGFP

and Pez-mCherry revealed a clear colocalization of these two

proteins at wound-induced puncta (Figures 3E and S2I).

We next investigated the localization of fluorescently tagged

Draper or Pez in Pez, draper, and src42A mutants. Pez was not

necessary for Draper puncta, consistent with the multimerization

of Draper driving receptor clustering and implying that Pez instead

plays a role in downstream signaling (Figure S2J). In the absence

of either Draper or Src42A, macrophages under basal (un-

wounded) conditions retained Pez-sfGFP puncta, albeit with a

slight increase in the absolute number of puncta per cell in draper

mutant macrophages (Figures 3F and 3G). However, when

compared to controls, the dynamic subcellular localization of
Red line donates cell periphery; yellow arrow indicates direction of wound.

s) following wounding demonstrate similar dynamics over time.

lowing wounding. For all kymographs, the x axes represent distance starting at

(10 s/pixel; 2.5 min total).

utant macrophages.

ificantly altered in mutants (nR 10 cells fromR5 embryos/genotype; Kruskal-

parisons, respectively).

) 5 min post-wounding. Direction of wound marked by yellow arrow.

d significant increase in puncta number that is dependent on both Draper and

allis with Dunn’s multiple comparisons) and (K) a wound-induced significant

that is absent in draper and src42A mutants (n R 6 cells from R5 embryos/

). All error bars are mean ± SD. *p < 0.05, **p < 0.01, and ****p < 0.001. All scale

ditions, Draper’s ITAM domain remains in an inactive state. Following H2O2-

its FERM-domain-mediated interactionwith Src42a. Acting as an adaptor, Pez

o efficient macrophage chemotaxis.

Current Biology 31, 1–9, February 22, 2021 5



Figure 4. The Orthologs of Pez (PTPN21) and Draper (MEGF10) Are Required for Leukocyte Recruitment to Wounds in Zebrafish Larvae

(A) Representative images of entire control, PTPN21 crispant, andMEGF10 crispant zebrafish 3 dpf larvae expressing either lysc:nls-mScarlet (neutrophil marker)

or mpeg1.1:nls-mScarlet and mpeg1.1eGFP (macrophage marker). Scale bars represent 500 mm.

(B) Quantification of leukocyte numbers revealed an increase in neutrophils in PTPN21 crispants (n = 10 larvae/genotype; Kruskal-Wallis with Dunn’s multiple

comparisons) and a decrease in macrophage in MEGF10 crispants (n R 7 larvae/genotype; one-way ANOVA with Dunnett’s multiple comparisons).

(C) For wound studies, zebrafish embryos (one cell stage) were injected with 2 CRISPR guide RNAs (crRNAs) alongside tracrRNA and raised to 3 dpf. Following

tailfin transection, fish were stained at 2, 6, and 22 h post-injury (hpi).

(legend continued on next page)

ll
OPEN ACCESS

6 Current Biology 31, 1–9, February 22, 2021

Please cite this article in press as: Campbell et al., PTPN21/Pez Is a Novel and Evolutionarily Conserved Key Regulator of Inflammation In Vivo, Current
Biology (2020), https://doi.org/10.1016/j.cub.2020.11.014

Report



ll
OPEN ACCESS

Please cite this article in press as: Campbell et al., PTPN21/Pez Is a Novel and Evolutionarily Conserved Key Regulator of Inflammation In Vivo, Current
Biology (2020), https://doi.org/10.1016/j.cub.2020.11.014

Report
Pez was strongly perturbed in both these mutants, wherein the

Pez puncta were predominantly sequestered in the cell body (Fig-

ures 3F and 3H). Furthermore, in response towounding, therewas

no stimulation of Pez clustering in either draper or src42Amutant

macrophages as observed in control cells (Figures 3I–3K). These

data imply that Pez dynamically relocalizes to the lamellipod in

response towound-inducedDraper clustering and Src42a activity

in order to potentiate inflammatory signaling.

Importantly, the few remaining lamellipodial Pez puncta within

draper and src42A mutant macrophages appeared to behave

normally and flowed toward the cell body with similar dynamics

to those in controls (Figure S2K). This, together with the high

basal number of Pez puncta present in either mutant relative to

control, and the basal clustering of Pez in the control in the

absence of detectable Draper puncta, is consistent with Pez

having targets other than Draper. However, in response to the

wound-induced surge in Draper clustering, Pez is co-opted

into these puncta via its FERM-domain-mediated interaction

with Src42a. The absence of any role for Pez’s catalytic activity

in the Draper-mediated inflammation suggests that Pez is acting

as an adaptor protein at Draper clusters. As such, Pez organizes

these clusters into effective signaling hubs, allowing the critical

threshold of activity to be met in order to drive inflammatory

recruitment (Figure 3L).

Having identified a novel regulator of damage-induced inflam-

mation in Drosophila, we sought to determine whether the activ-

ity of Pez in regulating chemotaxis is conserved in the vertebrate.

We therefore investigated both the ortholog of Pez—PTPN21—

and the ortholog of Draper—MEGF10—in a zebrafish leukocyte

wound recruitment model. First, to confirmwhether PTPN21 and

MEGF10 are expressed in larval zebrafish leukocytes, we mined

existing RNA sequencing (RNA-seq) datasets for transcript

expression.21,22 This revealed that both ptpn21 andmegf10 tran-

scripts were enriched within neutrophils by 3 days post-fertiliza-

tion (dpf) and macrophages by 2 dpf (Figures S2L and S2M).

To investigate what effects the loss of PTPN21 and

MEGF10 have on the development of zebrafish leukocytes,

we independently utilized the transgenic neutrophil line

Tg(lysC:NLS-mScarlet)23 and macrophage reporter lines

Tg(mpeg1.1:NLS-mScarlet) and Tg(mpeg1.1:EGFP) to generate

CRISPR-Cas9-mediated mutant larvae (‘‘crispants’’; Figures

S2N and S2P). Using restriction fragment length polymorphism

analysis (RFLP),24 we were able to validate the successful
(D) Images of wounded control larvae and PTPN21 crispants at 2, 6, and 22 hpi tim

Quantification zone of 150 mm proximal to the wound margin is marked by the w

(E) Significantly reduced neutrophils recruited to the wound at 6 hpi in PTPN21 cr

time point; multiple t test).

(F) Images of wounded control larvae and PTPN21 crispants at 2, 6, and 22 hpi tim

are shown. Quantification zone of 150 mm proximal to the wound margin is mark

(G) Significantly reduced macrophages recruited to the wound at 6 hpi and 22 hp

multiple t test).

(H) Images of wounded control larvae andMEGF10 crispants at 2, 6, and 22 hpi. T

zone of 150 mm proximal to the wound margin is marked by the white box acros

(I) Significantly reduced neutrophils recruited to the wound at all time points in ME

each time point; multiple t test).

(J) Images of wounded control larvae and MEGF10 crispants at 2, 6, and 22 hpi tim

are shown. Quantification zone of 150 mm proximal to the wound margin is mark

(K) Significantly reduced macrophages recruited to the wound at 6 hpi and 22 h

multiple t test).

All error bars are mean ± SD. *p < 0.05, **p < 0.01, and ****p < 0.001. All scale b
generation of F0 crispant larvae (Figures S2O and S2Q). Imag-

ing the entirety of the crispant fish revealed leukocyte distribu-

tion was unaltered when compared with wild type (Figure 4A).

However, we found an increase in neutrophil number in

PTPN21 crispants—akin to the macrophage phenotype we

identify in Drosophila—and a 20% reduction in macrophage

numbers in MEGF10 crispant fish (Figure 4B).

We next investigated leukocyte recruitment to tailfin transec-

tion wounds made in 3 dpf control and crispant embryos (Fig-

ure 4C). In control animals, these large wounds trigger a robust

inflammatory response—with neutrophil recruitment peaking at

6 hpi and remaining at the wound until 24 hpi and macrophage

numbers continuing to increase over a 24 h period.25 Consistent

with our findings in the fly, woundsmade to PTPN21 crispant fish

revealed a significant reduction in the peak number of neutro-

phils recruited to tail fin wounds at 6 hpi (Figures 4D and 4E)

and a reduction in macrophage numbers at both 6 hpi and

22 hpi (Figures 4F and 4G).

Because Pez and Draper work together to drive inflammation

in Drosophila macrophages, we investigated whether MEGF10

is also required for leukocyte recruitment to wounds. Indeed,

neutrophils in MEGF10 crispants showed a significantly

reduced wound recruitment as early as 2 h post-wounding,

and in macrophages, MEGF10 crispant showed nearly 50%

reduction at 6 and 22 h post-wounding (Figures 4H–4K). This

provides compelling evidence that both PTPN21 and

MEGF10 regulate inflammation in zebrafish and that the

H2O2-Src42A-Pez-Draper signaling axis is an evolutionarily

conserved signaling pathway that directs the earliest innate im-

mune inflammatory response to damage in vivo. Further studies

are required to identify more components of this inflammatory

signaling axis, but from this study, PTPN21 and MEGF10

emerge as key regulators of inflammation and should now be

explored as potential therapeutic targets for the treatment of in-

flammatory disorders.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

a-GFP Abcam Abcam Cat# ab13970; RRID: AB_300798

a-singed DSHB DSHB Cat# sn 7C; RRID: AB_528239

a-armadillo DSHB DSHB Cat# N2 7A1 ARMADILLO;

RRID: AB_528089

a-mCherry Abcam Abcam Cat# ab125096; RRID: AB_11133266

a-chicken AF488 Invitrogen Molecular Probes Cat# A-11039;

RRID: AB_142924

a-mouse AF568 Invitrogen Molecular Probes Cat# A-21124;

RRID: AB_141611

Chemicals, Peptides, and Recombinant Proteins

Multisite Gateway Three Fragment vector

construction kit

Invitrogen 12537023

Catalase Sigma C1345

Trypsin Sigma T1426

16% Methanol Free Paraformaldehyde Alfa Aesar 11490570

Heptane Sigma 34873

Triton X-100 Sigma T8787

BSA Sigma A4503

Vectashield Mounting Media Vector Labs H-1000

Voltalef oil VWR 24627.188

NLS-Cas9 NE Biolabs M0646

RNase free water Sigma W4502

DNeasy Blood and Tissue Kit QIAGEN 69504

MyTaq Red Mix Meridian Bioscience BIO-25043

BslI NEBiolabs R0555

MWoI NEBiolabs R0573

Tricaine/MS-22 Sigma E10521

Horse serum Sigma H0146

Critical commercial assays

Multisite Gateway Three Fragment vector

construction kit

Invitrogen 12537023

Experimental Models: Organisms/Strains

DROSOPHILA N/A

P{GawB}PezNP4748 Kyoto Stock Center RRID: DGGR_104771

serpentHemoGal4 23 N/A

serpentHemoGal4.2 This work N/A

croquemort-Gal4 24 N/A

UAS-GFP BDSC RRID: BDSC_6874

UAS-2xeGFP BDSC RRID: BDSC_6658

UAS-PezTRiP861 BDSC RRID: BDSC_33918

UAS-PezTRiP862 BDSC RRID: BDSC_33919

UAS-TRiPLuciferase BDSC RRID: BDSC_31603

UAS-Pez 15 N/A

UAS-PezDFERM 15 N/A

UAS-PezDPTP 15 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

UAS-PezDPD 15 N/A

UAS-Pez-sfGFP This work N/A

UAS-Pez-mCherry This work N/A

UAS-Draper-eGFP This work N/A

w1118 BDSC RRID: BDSC_3605

PezCB Kyoto Stock Center RRID: DGGR_123596

Pez2 15 N/A

src42A[E1] [25] BDSC RRID: BDSC_6408

draperD5 26 N/A

ZEBRAFISH N/A

Tg(lysC:DsRed2) 23 N/A

Tg(mpeg:NLS-Scarlet)ed207 This work N/A

Tg(lysC:NLS-mScarlet)ed229 This work N/A

Tg(mpeg1,1:EGFP)gl22 27 N/A

Oligonucleotides

crRNA MEGF10 1:

GCTACAGAACGGCCTATCGC

Sigma Custom

crRNA MEGF10 2:

TGTCAGTGTGAGCCGGGCTG

Sigma Custom

crRNA PTPN21 1:

GGTGGCATCATGTAGGGCTG

Sigma Custom

crRNA PTPN21 2:

GAATCAGGGCGCTGTGCCGG

Sigma Custom

crRNA MEGF10 locus 1 genotyping fwd:

aaccgaaaacaaatcaaaggagggc

Eurofins Custom

crRNA MEGF10 locus 1 genotyping rev:

acattgtaaaagcgctacagaaacaaa

Eurofins Custom

crRNA MEGF10 locus 2 genotyping fwd:

tgcttgtgtttgtttgcttg

Eurofins Custom

crRNA MEGF10 locus 2 genotyping rev:

tgaatggcttttgtcactcg

Eurofins Custom

crRNA PTPN21 locus 1 genotyping fwd:

gcagttcactataaaggcagc

Eurofins Custom

crRNA PTPN21 locus 1 genotyping rev:

gtggccgttaaagtgcatc

Eurofins Custom

crRNA PTPN21 locus 2 genotyping fwd:

gatgtcctccaacccaagca

Eurofins Custom

crRNA PTPN21 locus 2 genotyping rev:

aaaggatactgtcctgcgcc

Eurofins Custom

tracrRNA Sigma TRACRRNA05N

Software and Algorithms

GraphPad Prism V8.4.1 GraphPad Software https://www.graphpad.com/

scientific-software/prism/

ImageJ/FIJI National Institute of Health https://imagej.nih.gov/ij/

Volocity PerkinElmer https://www.perkinelmer.com/

lab-products-and-services/resources/

cellular-imaging-software-downloads.html

Zen Black Zeiss https://www.zeiss.com/microscopy/int/

products/microscope-software/zen.html

Photoshop Adobe https://www.adobe.com/uk/products/

photoshop.html

Illustrator Adobe https://www.adobe.com/uk/products/

illustrator.html
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Will Wood

w.wood@ed.ac.uk

Materials availability
Plasmids and transgenic lines generated in this study are available by request.

Data and code availability
This study did not generate datasets/code.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila stocks and genetics
Drosophila stocks were maintained according to standard protocols26. Embryos for live imaging and fixation were collected from ap-

ple juice agar plates from overnight laying cages (all incubated at 22�C, with the exception of RNAi experiments, which were kept at

29�C overnight to boost expression).

The following driver lineswere combinedwith UAS constructs:Pez-Gal4 (P{GawB}PezNP4748,Kyoto), serpentHemoGal428, serpen-

tHemoGal4.2 (srp-Gal4.2, an enhanced expression construct generated in the lab by Dr Kate Comber and Dr Fred Rodrigues) and

croquemort-Gal4 (crq-Gal4;29). The following UAS constructs were used in this study: UAS-GFP, UAS-PezTRiP861 (VDRC), UAS-

PezTRiP862 (VDRC), UAS-Pez, UAS-PezDFERM, UAS-PezDPTP, UAS-PezDPD (all a kind gift of Dr. Hugo Stocker17), UAS-Pez-sfGFP

and UAS-Draper-eGFP (both generated in this study – synthesized and cloned into pUASt by GeneArt and commercially injected

by Best Gene Inc.). The mutant alleles used in this study were: w1118 (as a control background), PezCB (P{RS3} insert of 6.046 Kb -

Kyoto),Pez2 (3083bpdeletion – line agift fromDr. HugoStocker17), src42A[E1] (EMSpointmutant30) anddraperD5 (1379bpdeletion31).

Zebrafish lines and rearing
All zebrafish lines were kept and raised under standard conditions32 and all experiments were approved by the British Home Office

(project license No PEE579666). Tg{lysC:DsRed2}23 and Tg(lysC:NLS-mScarlet)ed229 lines were used to label neutrophils, whereas

macrophages were visualized through Tg(mpeg1,1:EGFP)gl2232 and Tg(mpeg1.1:NLS-mScarlet)ed207. The Tg(mpeg:NLS-Scar-

let)ed207 and Tg(lysC:NLS-mScarlet)ed229 line was generated using the Multisite Gateway Three Fragment vector construction kit (In-

vitrogen 12537023). In brief a 50 Entry vector containing 1.85Kmpeg1.1 promoter fragment or 8K lysC promoter (gift from Prof. Steve

Renshaw), pME-nlsScarlet, p3E-(SV40)PolyA and a pDest-Tol2-polyA vector (Tol2 kit33) were added into a LR reaction according to

manufacturer’s instruction. The recombinational cloning resulted in the final pDest-Tol2-mpeg1.1::nls-Scarlet-polyA and pDest-

Tol2-lysC::nls-Scarlet-polyA vector. The final transgenic DNA plasmids were used to generate F0 founder fish. F1 adult fish was

out crossed with wild-type fish, brightly labeled larvae were selected as F2. All experiments described were using F3 larvae from

the F2 in cross.

METHOD DETAILS

Proteomics screen
Following overnight laying, stage 15 w*;srp-GAL4,UAS-GFP and w*;src42A[E1],srp-Gal4,UAS-GFP dechorionated embryos were

collected in both the presence and absence of catalase. For the catalase treatment a 100x solution of 0.1 g catalase (Sigma

C1345) in 1.9 mL of PBS was added to all solutions cells came into contact with. 250-280 embryos per sample were placed into

the tip of a cold loose-fitting Dounce homogenizer. Embryos were then pestled gently in 250 mL of Seecof buffer.34 The pestle

was washed with 750 mL dissociation media34 and transferred to an Eppendorf tube. The embryonic suspension was then sieved

through at 40 mm nylon mesh and collected into a cold Eppendorf tube. The mixture was then centrifuged for 5 min at 350 rcf. at

4�C, the supernatant removed, and cells resuspended in 250 mL cold Seecof. Samples were kept on ice at all times.

Macrophages were then sorted by gating single/live/GFP+ cells into lysis buffer and kept at�80�C until further analysis. A total of 6

samples per treatment containing between 376,000-466,000 total cells were then pooled. Pooled samples were then trypsin (Sigma

T1426) digested, and TMT labeled at the peptide level. All samples where then combined and phospho-enriched using a TiO2 col-

umn. Finally, phospho-enriched and TiO2 flow through (containing the non-phosphorylated peptides) were sent to LC-MS analysis.

Returned peptide spectra were then compared to Drosophila melanogaster databases to obtain protein information. Ratios of pep-

tide abundanceswere compared across sample type. Due to low overall protein abundance, the dataset was adjusted by normalizing

to the median protein ratios of total protein levels between samples. See Figure S1.

Drosophila Fixation and immunostaining
Dechorionated embryos were collected in a 2 mL glass vial containing a 1:1 4% PFA:heptane mixture. Embryos were left tumbling in

fixative for 30 minutes at room temperature, washed with PBS-Tx-BSA and incubated in primary antibodies at 4�C overnight. After
e3 Current Biology 31, 1–9.e1–e5, February 22, 2021
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washing with PBS-Tx-BSA and blocking with horse serum (2% v/v, Sigma-Aldrich) for 30minutes, embryoswere incubated with sec-

ondary antibodies for 1 hour at room temperature. Washed embryos were then mounted in Vectashield mounting medium. Primary

antibodies: a-GFP (1:500, Abcam Ab13970), a-singed (Fascin, 1:100 DSHB Sn 7C) and a-armadillo (b catenin, 1:25, DSHB N2 7A1).

Secondary antibodies: a-chicken AF488 (1:250 Invitrogen A11039) and a-mouse AF568 (1:250 Invitrogen A21124).

Drosophila Live imaging
Dechorionated embryos were staged and genotyped (by selecting against fluorescent balancer chromosomes) before being

mounted in a droplet of VOLTALEF oil (VWR) on a glass slide, flanked by supporting coverslips with a bridging coverslip sealed

on top as previously described.35 Images at z-slice intervals of 0.5 mmwere acquired with a spinning disc confocal microscope (Per-

kin Elmer Ultraview) with either a 63x (NA 1.4) or a 40x (NA 1.3) objective. Epithelial wounds were generated by laser ablation as pre-

viously described36 using a nitrogen-pumped Micropoint ablation laser (Andor Technologies).

RNaseq data mining
Existing RNaseq datasets21,22 were accessed through Gene Expression Omnibus to mine for expression of PTPN21 andMEGF10 in

3 dpf larval neutrophils and 2 dpf larval macrophages. For both datasets, the raw counts matrix was used to calculate Transcripts Per

Million (TPM) to account for sequencing depth and gene transcript length.

CRISPR-Cas9 gene editing of zebrafish embryos
CRISPR/Cas9-mediated mutant larvae ‘‘Crispants’’ were generated as described previously24. Briefly, CRISPR guide RNA (crRNA)

sequences in which restriction enzyme recognition sequences overlapped the Cas9 cut site were identified in PTPN21 and MEGF10

exons and commercially synthesized (Sigma-Aldrich). 1 mL of each crRNAs were injected together into the embryo at the single-cell

stage alongside 1 mL tracrRNA (Sigma-Aldrich), 0.3 mL NLS-Cas9 (NE Biolabs) and 1.7 mL RNase free water (Sigma-Aldrich). For

neutrophil controls, Cas9 was omitted and replaced with a further 0.3 mL RNase free water. For macrophage experiments wound

recruitment was compared to uninjected clutch-mates. Genotyping to confirm successful gene editing was performed following

DNA extraction from individual larvae (95�C in 50mM NaOH for 1 hr, followed by addition of 0.5 M Tris-HCl pH 8.0) as previously

described24). PCR of the edited regionwas performed usingMyTaqRedMix (Meridian Bioscience) and fragments were subsequently

digested over night by the addition of 1 mL BslI or MwoI (NEBiolabs) directly to the reaction. Fragments were then resolved on a 2%

agarose gel.

To quantify leukocyte numbers throughout the entire zebrafish larvae, control and Crispant fish were raised to 3 dpf and imaged

using the VAST BioImager microscope platform as previously described37. Briefly, anesthetised live fish were mounted in glass cap-

illaries and imaged laterally using a 1.6x post-magnification adaptor combined with a C-Plan-Apochromat 10x (NA 0.5) dipping lens

(Carl Zeiss) and dual AxioCam 506 m CCD cameras (Carl Zeiss). Stitched maximum intensity projections of the entire larvae were

imported into FIJI (NIH) and cell counter used to manually count fluorescent leukocyte nuclei.

Tailfin transection, fixation and staining
3 dpf larvaewere anaesthetised by the addition of 0.02%buffered 3-aminobenzoic acid ethyl ester (Tricaine/MS-222) into the embryo

medium and were left until paralysed. Using a scalpel, the entire tail fin and a small portion of the trunk distal to the end of the vascu-

lature was removed. The embryos were then placed in fresh medium and allowed to recover. At 2 hours post injury (hpi), 6 hpi and

22 hpi larvae were culled using excess Tricaine. Culled larvae were then placed in an Eppendorf containing 4% PFA, 0.4% Triton-X

diluted in PBS and fixed overnight at 4�C or at room temperature for 2 hours.

Wholemount immunostaining of zebrafish larvae was performed as described previously38. Wash buffer comprising PBS contain-

ing 0.1% Triton-X (PBST Sigma-Aldrich) and 5% horse serum (Sigma Aldrich) was used for blocking. Both primary and secondary

antibodies were diluted in PBST containing 2%–5% horse serum and were left to incubate over night at 4�C. DAPI was added to

secondary antibodies to visualize the entire tissue. Primary antibody: a-mCherry (1:500, Abcam Ab125096). Secondary antibody:

a-mouse AF 568 (1:250 Invitrogen A21124). Stained samples were mounted laterally in Vectashield on glass slides and imaged on

a Zeiss LSM880 confocal microscope using a 25x objective (NA 0.8).

QUANTIFICATION AND STATISTICAL ANALYSIS

All images were imported into FIJI (NIH). Vacuoles were counted in raw images before z-projection as fluorescent negative areas

within the cell body. For cell tracking, the manual tracking plugin was used, and data was exported to Microsoft Excel to obtain

mean cell speed and distance traveled. Meandering index was calculated as Euclidean distance/Total distance traveled and re-

sponding cells were defined as those that reached the wound site at any point within 2 hr. To quantify macrophages recruited to

wounds inDrosophila embryos, the outline of thewoundwas defined using bright field images andwas then drawn across all Z slices.

Inflammatory recruitment was defined as any macrophage that contacted (specifically via its cell body) the wound perimeter over the

time course of imaging followingwounding. For wound recruitment analysis, macrophage numbers recruited towounds inDrosophila

embryos were divided by the wound perimeter to account for differing wound sizes due to variation in laser ablation. To quantify

wound closure, wound perimeter was recorded over time and analyzed as a function of wound size at 10 minutes – the earliest

time point at which the wound outline can be accurately measured by brightfield imaging.
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Following live imaging of fluorescently tagged constructs within macrophages, lamellipods were outlinedmanually for visualization

using the Freehand selection tool. Puncta were tracked using manual tracking and counted using the cell counter plugin within FIJI

(NIH). Kymographs were generated using the reslice tool along a line (10 pixels wide) following the path of an individual punctum (line

drawn using segmented line tool to accommodate non-linear path of the puncta). In each kymograph, the x axis represents distance

starting at the lamellipod leading edge on the left, toward the cell body on the right (174 nm/pixel, 17.4 mm total). The y axis represent

time (10 s/pixel, 2.5 min total).

For quantification of zebrafish larvae tailfin transection, a 150 mmarea was outlined extending from the woundmargin. All DsRed2/

mScarlet positive leukocytes within this area were counted manually.

Raw data was collated using Microsoft Excel and imported into Prism 8 (GraphPad) for statistical analysis and graphing. All data-

sets underwent Normality tests to ensure the appropriate statistical tests were performed. For normally distributed data Unpaired t

tests were performed, with Welch’s correction where variances were significantly different (determined by F-test). For data not nor-

mally distributed, Mann-Whitney U tests were performed to confer significance. ANOVA tests were performed for datasets with more

than two groups for comparison. For data with comparable variances (F-tested) Tukey’s or Sidak’s multiple comparisons were per-

formed as recommended by the software. Brown-Forsythe andWelch ANOVA tests were used were variances significantly differed.
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