2,414 research outputs found

    Super p-branes

    Get PDF
    It is shown that the extension of the spacetime supersymmetric Green- Schwarz covariant superstring action to p-dimensional extended objects (p-branes) is possible if and only if the on-shell p-dimensional bose and fermi degrees of freedom are equal. This is further evidence for world-tube supersymmetry in these models. All the p-brane models are related to superstring actions in d = 3, 4, 6 or 10 dimensions by double dimensional reduction, (which we generalise to reduction on arbitrary compact spaces), and we also show how they may be considered as topological defects of supergravity theories

    Self-consistent Treatment of Crystal-Electric-Field-Levels in the Anderson Lattice

    Full text link
    We consider an Anderson lattice model with a spin 1/2 degenerated conduction electron band and localized ionic CEF-levels, classified according to the irreducible representation of the point group of the lattice. We present the self-consistency equations for local approximations ("d"d\rightarrow\infty" approximation) for the periodic Anderson model. It leads to a matrix formulation of the effective local density of states and the lattice ff-Green's function. We derive the quasi-particle life-time which enters the Boltzmann transport equations. The impact of a kk-dependent hybridization is discussed. We prove that vertex corrections will vanish, as long as all states of an irreducible representation couple to the conduction electron band with a hybridization matrix element of the same parity.Comment: 3 pages, REVTeX type, proceedings of SCES96 Z\"uric

    Carbon sequestration and biogeochemical cycling in a saltmarsh subject to coastal managed realignment

    Get PDF
    Globally, wetlands provide the largest terrestrial carbon (C) store, and restoration of degraded wetlands provides a potentially important mechanism for climate change mitigation. We examined the potential for restored saltmarshes to sequester carbon, and found that they can provide a modest, but sustained, sink for atmospheric CO2. Rates of C and nutrient cycling were measured and compared between a natural saltmarsh (high- and low-shore locations), claimed arable land on former high-shore saltmarsh and a managed realignment restoration site (high- and low-shore) in transition from agricultural land to saltmarsh 15 years after realignment, at Tollesbury, Essex, UK. We measured pools and turnover of C and nitrogen (N) in soil and vegetation at each site using a range of methods, including gas flux measurement and isotopic labelling. The natural high-shore site had the highest soil organic matter concentrations, topsoil C stock and below-ground biomass, whereas the agricultural site had the highest total extractable N concentration and lowest soil C/N ratio. Ecosystem respiration rates were similar across all three high-shore sites, but much higher in both low-shore sites, which receive regular inputs of organic matter and nutrients from the estuary. Total evolution of 14C-isotopically labelled substrate as CO2 was highest at the agricultural site, suggesting that low observed respiration rates here were due to low substrate supply (following a recent harvest) rather than to inherently low microbial activity. The results suggest that, after 15 years, the managed realignment site is not fully equivalent to the natural saltmarsh in terms of biological and chemical function. While above ground biomass, extractable N and substrate mineralisation rates in the high-shore site were all quite similar to the natural site, less dynamic ecosystem properties including soil C stock, C/N ratio and below-ground biomass all remained more similar to the agricultural site. These results suggest that reversion to natural biogeochemical functioning will occur following restoration, but is likely to be slow; we estimate that it will take approximately 100 years for the restored site to accumulate the amount of C currently stored in the natural site, at a rate of 0.92 t C ha−1 yr−1

    ARQ-197, a small-molecule inhibitor of c-Met, reduces tumour burden and prevents myeloma-induced bone disease in vivo

    Get PDF
    The receptor tyrosine kinase c-Met, its ligand HGF, and components of the downstream signalling pathway, have all been implicated in the pathogenesis of myeloma, both as modulators of plasma cell proliferation and as agents driving osteoclast differentiation and osteoblast inhibition thus, all these contribute substantially to the bone destruction typically caused by myeloma. Patients with elevated levels of HGF have a poor prognosis, therefore, targeting these entities in such patients may be of substantial benefit. We hypothesized that ARQ-197 (Tivantinib), a small molecule c-Met inhibitor, would reduce myeloma cell growth and prevent myeloma-associated bone disease in a murine model. In vitro we assessed the effects of ARQ-197 on myeloma cell proliferation, cytotoxicity and c-Met protein expression in human myeloma cell lines. In vivo we injected NOD/SCID-γ mice with PBS (non-tumour bearing) or JJN3 cells and treated them with either ARQ-197 or vehicle. In vitro exposure of JJN3, U266 or NCI-H929 cells to ARQ-197 resulted in a significant inhibition of cell proliferation and an induction of cell death by necrosis, probably caused by significantly reduced levels of phosphorylated c-Met. In vivo ARQ-197 treatment of JJN3 tumour-bearing mice resulted in a significant reduction in tumour burden, tumour cell proliferation, bone lesion number, trabecular bone loss and prevented significant decreases in the bone formation rate on the cortico-endosteal bone surface compared to the vehicle group. However, no significant differences on bone parameters were observed in non-tumour mice treated with ARQ-197 compared to vehicle, implying that in tumour-bearing mice the effects of ARQ-197 on bone cells was indirect. In summary, these res ults suggest that ARQ-197 could be a promising therapeutic in myeloma patients, leading to both a reduction in tumour burden and an inhibition of myeloma-induced bone disease

    Towards a killer app for the Semantic Web

    Get PDF
    Killer apps are highly transformative technologies that create new markets and widespread patterns of behaviour. IT generally, and the Web in particular, has benefited from killer apps to create new networks of users and increase its value. The Semantic Web community on the other hand is still awaiting a killer app that proves the superiority of its technologies. There are certain features that distinguish killer apps from other ordinary applications. This paper examines those features in the context of the Semantic Web, in the hope that a better understanding of the characteristics of killer apps might encourage their consideration when developing Semantic Web applications

    Thresholds of biodiversity and ecosystem function in a forest ecosystem undergoing dieback

    Get PDF
    Ecological thresholds, which represent points of rapid change in ecological properties, are of major scientific and societal concern. However, very little research has focused on empirically testing the occurrence of thresholds in temperate terrestrial ecosystems. To address this knowledge gap, we tested whether a number of biodiversity, ecosystem functions and ecosystem condition metrics exhibited thresholds in response to a gradient of forest dieback, measured as changes in basal area of living trees relative to areas that lacked recent dieback. The gradient of dieback was sampled using 12 replicate study areas in a temperate forest ecosystem. Our results provide novel evidence of several thresholds in biodiversity (namely species richness of ectomycorrhizal fungi, epiphytic lichen and ground flora); for ecological condition (e.g. sward height, palatable seedling abundance) and a single threshold for ecosystem function (i.e. soil respiration rate). Mechanisms for these thresholds are explored. As climate-induced forest dieback is increasing worldwide, both in scale and speed, these results imply that threshold responses may become increasingly widespread

    Arable crop disease control, climate change and food security

    Get PDF
    Copyright Association of Applied BiologistsGlobal food security is threatened by crop diseases that account for average yield losses of 16%. Climate change is exacerbating threats to food security in much of the world, emphasising the need to increase food production in northern European countries such as the UK. However, to mitigate climate change, crops must be grown so as to minimise greenhouse gas emissions (GHG); results with UK oilseed rape demonstrate how disease control in arable crops can contribute to climate change mitigation. However, work examining impacts of climate change on UK epidemics of winter oilseed rape diseases illustrates unexpected, contrasting impacts of climate change on complex plant-disease interactions. In England, phoma stem canker is expected to become more severe whilst light leaf spot is expected to become less severe. Such work can provide guidance for government and industry planning for adaptation to impacts of climate change on crops to ensure future food securityFinal Accepted Versio

    Characterization and temperature dependence of Arctic Micromonas polaris viruses

    Get PDF
    Global climate change-induced warming of the Artic seas is predicted to shift the phytoplankton community towards dominance of smaller-sized species due to global warming. Yet, little is known about their viral mortality agents despite the ecological importance of viruses regulating phytoplankton host dynamics and diversity. Here we report the isolation and basic characterization of four prasinoviruses infectious to the common Arctic picophytoplankter Micromonas. We furthermore assessed how temperature influenced viral infectivity and production. Phylogenetic analysis indicated that the putative double-stranded DNA (dsDNA) Micromonas polaris viruses (MpoVs) are prasinoviruses (Phycodnaviridae) of approximately 120 nm in particle size. One MpoV showed intrinsic differences to the other three viruses, i.e., larger genome size (205 ± 2 vs. 191 ± 3 Kb), broader host range, and longer latent period (39 vs. 18 h). Temperature increase shortened the latent periods (up to 50%), increased the burst size (up to 40%), and affected viral infectivity. However, the variability in response to temperature was high for the different viruses and host strains assessed, likely affecting the Arctic picoeukaryote community structure both in the short term (seasonal cycles) and long term (global warming)

    Pathogenic Potential to Humans of Bovine Escherichia coli O26, Scotland

    Get PDF
    Escherichia coli O26 and O157 have similar overall prevalences in cattle in Scotland, but in humans, Shiga toxin–producing E. coli O26 infections are fewer and clinically less severe than E. coli O157 infections. To investigate this discrepancy, we genotyped E. coli O26 isolates from cattle and humans in Scotland and continental Europe. The genetic background of some strains from Scotland was closely related to that of strains causing severe infections in Europe. Nonmetric multidimensional scaling found an association between hemolytic uremic syndrome (HUS) and multilocus sequence type 21 strains and confirmed the role of stx<sub>2</sub> in severe human disease. Although the prevalences of E. coli O26 and O157 on cattle farms in Scotland are equivalent, prevalence of more virulent strains is low, reducing human infection risk. However, new data on E. coli O26–associated HUS in humans highlight the need for surveillance of non-O157 enterohemorrhagic E. coli and for understanding stx<sub>2</sub> phage acquisition
    corecore