488 research outputs found

    The EICAT+ framework enables classification of positive impacts of alien taxa on native biodiversity

    Get PDF
    Species introduced through human-related activities beyond their native range, termed alien species, have various impacts worldwide. The IUCN Environmental Impact Classification for Alien Taxa (EICAT) is a global standard to assess negative impacts of alien species on native biodiversity. Alien species can also positively affect biodiversity (for instance, through food and habitat provisioning or dispersal facilitation) but there is currently no standardized and evidence-based system to classify positive impacts. We fill this gap by proposing EICAT+, which uses 5 semiquantitative scenarios to categorize the magnitude of positive impacts, and describes underlying mechanisms. EICAT+ can be applied to all alien taxa at different spatial and organizational scales. The application of EICAT+ expands our understanding of the consequences of biological invasions and can inform conservation decisions

    The EICAT+ framework enables classification of positive impacts of alien taxa on native biodiversity

    Get PDF
    Species introduced through human-related activities beyond their native range, termed alien species, have various impacts worldwide. The IUCN Environmental Impact Classification for Alien Taxa (EICAT) is a global standard to assess negative impacts of alien species on native biodiversity. Alien species can also positively affect biodiversity (for instance, through food and habitat provisioning or dispersal facilitation) but there is currently no standardized and evidence-based system to classify positive impacts. We fill this gap by proposing EICAT+, which uses 5 semiquantitative scenarios to categorize the magnitude of positive impacts, and describes underlying mechanisms. EICAT+ can be applied to all alien taxa at different spatial and organizational scales. The application of EICAT+ expands our understanding of the consequences of biological invasions and can inform conservation decisions.Agencia Estatal de InvestigaciĂłn PCI2018-092939, PCI2018-092986Swiss National Science Foundation 31003A_179491, 31BD30_184114Austrian Fonds zur Förderung der Wissenschaftlichen Forschung 4011-B32German Bundesministerium fĂŒr Bildung und Forschung 16LC1803A, 01LC1807CFrench National Research Agency ANR-18-EBI4-0001-06US National Science Foundation ICER-1852060National Research Foundation of South Africa 89967Australian Research Council DP200101680UK Natural Environment Research Council NE/V007548/1Hellenic Foundation for Research and Innovation (H.F.R.I.) HFRIFM17-159

    A Framework for Global Twenty-First Century Scenarios and Models of Biological Invasions

    Get PDF
    Biological invasions have emerged as an eminent feature of global change, with substantial impacts on the environment and human livelihoods. Current research demonstrates that the numbers and impacts of alien species are rising unabatedly. At the same time, we lack a thorough understanding of potential future trajectories for the decades to come. With the recent establishment of comprehensive global databases, it is, for the first time, feasible to develop and quantify future scenarios of biological invasions. Therefore, we propose a conceptual framework for how to develop alien species scenarios for the twenty-first century and how to identify relevant steps and challenges along the way. The concept will be important to inform research, policy, stakeholders, and the general public. Furthermore, we call for the scientific community to join forces and to operationalize the framework for scenarios and models of biological invasions to develop an important baseline for understanding and managing future biological invasions

    Climate change will increase naturalization risk from garden plants in Europe

    Get PDF
    Aim: Plant invasions often follow initial introduction with a considerable delay. The current non-native flora of a region may hence contain species that are not yet naturalized but may become so in the future, especially if climate change lifts limitations on species spread. In Europe, non-native garden plants represent a huge pool of potential future invaders. Here, we evaluate the naturalization risk from this species pool and how it may change under a warmer climate. Location Europe. Methods: We selected all species naturalized anywhere in the world but not yet in Europe from the set of non-native European garden plants. For this subset of 783 species, we used species distribution models to assess their potential European ranges under different scenarios of climate change. Moreover, we defined geographical hotspots of naturalization risk from those species by combining projections of climatic suitability with maps of the area available for ornamental plant cultivation. Results: Under current climate, 165 species would already find suitable conditions in > 5% of Europe. Although climate change substantially increases the potential range of many species, there are also some that are predicted to lose climatically suitable area under a changing climate, particularly species native to boreal and Mediterranean biomes. Overall, hotspots of naturalization risk defined by climatic suitability alone, or by a combination of climatic suitability and appropriate land cover, are projected to increase by up to 102% or 64%, respectively. Main conclusions: Our results suggest that the risk of naturalization of European garden plants will increase with warming climate, and thus it is very likely that the risk of negative impacts from invasion by these plants will also grow. It is therefore crucial to increase awareness of the possibility of biological invasions among horticulturalists, particularly in the face of a warming climate

    A four‐component classification of uncertainties in biological invasions: implications for management

    Get PDF
    Although uncertainty is an integral part of any science, it raises doubts in public perception about scientific evidence, is exploited by denialists, and therefore potentially hinders the implementation of management actions. As a relatively young field of study, invasion science contains many uncertainties. This may explain why, despite international policies aimed at mitigating biological invasions, the implementation of national- and regional-scale measures to prevent or control alien species has done little to slow the increase in extent of invasions and the magnitude of impacts. Uncertainty is therefore a critical aspect of invasion science that should be addressed to enable the field to progress further. To improve how uncertainties in invasion science are captured and characterized, we propose a framework, which is also applicable to other applied research fields such as climate and conservation science, divided into four components: the need (1) to clearly circumscribe the phenomenon, (2) to measure and provide evidence for the phenomenon (i.e., confirmation), (3) to understand the mechanisms that cause the phenomenon, and (4) to understand the mechanisms through which the phenomenon results in consequences. We link these issues to three major types of uncertainty: linguistic, psychological, and epistemic. The application of this framework shows that the four components tend to be characterized by different types of uncertainty in invasion science.We explain how these uncertainties can be detrimental to the implementation of management measures and propose ways to reduce them. Since biological invasions are increasingly tightly embedded in complex socio-ecological systems, many problems associated with these uncertainties have convoluted solutions. They demand the consensus of many stakeholders to define and frame the dimensions of the phenomenon, and to decide on appropriate actions. While many of the uncertainties cannot be eliminated completely, we believe that using this framework to explicitly identify and communicate them will help to improve collaboration between researchers and managers, increase scientific, political, and public support for invasion research, and provide a stronger foundation for sustainable management strategies

    Prioritising surveillance for alien organisms transported as stowaways on ships travelling to South Africa

    Get PDF
    The global shipping network facilitates the transportation and introduction of marine and terrestrial organisms to regions where they are not native, and some of these organisms become invasive. South Africa was used as a case study to evaluate the potential for shipping to contribute to the introduction and establishment of marine and terrestrial alien species (i.e. establishment debt) and to assess how this varies across shipping routes and seasons. As a proxy for the number of species introduced (i.e. 'colonisation pressure') shipping movement data were used to determine, for each season, the number of ships that visited South African ports from foreign ports and the number of days travelled between ports. Seasonal marine and terrestrial environmental similarity between South African and foreign ports was then used to estimate the likelihood that introduced species would establish. These data were used to determine the seasonal relative contribution of shipping routes to South Africa's marine and terrestrial establishment debt. Additionally, distribution data were used to identify marine and terrestrial species that are known to be invasive elsewhere and which might be introduced to each South African port through shipping routes that have a high relative contribution to establishment debt. Shipping routes from Asian ports, especially Singapore, have a particularly high relative contribution to South Africa's establishment debt, while among South African ports, Durban has the highest risk of being invaded. There was seasonal variation in the shipping routes that have a high relative contribution to the establishment debt of the South African ports. The presented method provides a simple way to prioritise surveillance effort and our results indicate that, for South Africa, port-specific prevention strategies should be developed, a large portion of the available resources should be allocated to Durban, and seasonal variations and their consequences for prevention strategies should be explored further. (Résumé d'auteur

    Identifying, reducing, and communicating uncertainty in community science:A focus on alien species

    Get PDF
    Community science (also often referred to as citizen science) provides a unique opportunity to address questions beyond the scope of other research methods whilst simultaneously engaging communities in the scientific process. This leads to broad educational benefits, empowers people, and can increase public awareness of societally relevant issues such as the biodiversity crisis. As such, community science has become a favourable framework for researching alien species where data on the presence, absence, abundance, phenology, and impact of species is important in informing management decisions. However, uncertainties arising at different stages can limit the interpretation of data and lead to projects failing to achieve their intended outcomes. Focusing on alien species centered community science projects, we identified key research questions and the relevant uncertainties that arise during the process of developing the study design, for example, when collecting the data and during the statistical analyses. Additionally, we assessed uncertainties from a linguistic perspective, and how the communication stages among project coordinators, participants and other stakeholders can alter the way in which information may be interpreted. We discuss existing methods for reducing uncertainty and suggest further solutions to improve data reliability. Further, we make suggestions to reduce the uncertainties that emerge at each project step and provide guidance and recommendations that can be readily applied in practice. Reducing uncertainties is essential and necessary to strengthen the scientific and community outcomes of community science, which is of particular importance to ensure the success of projects aimed at detecting novel alien species and monitoring their dynamics across space and time

    Around the world in 500 years: Inter‐regional spread of alien species over recent centuries

    Get PDF
    Aim: The number of alien species has been increasing for centuries world-wide, but temporal changes in the dynamics of their inter-regional spread remain unclear. Here, we analyse changes in the rate and extent of inter-regional spread of alien species over time and how these dynamics vary among major taxonomic groups. Location: Global. Time period: 1500–2010. Major taxa studied: Vascular plants, mammals, birds, fishes, arthropods and other invertebrates. Methods: Our analysis is based on the Alien Species First Record Database, which comprises >60,000 entries describing the year when an alien species was first recorded in a region (mostly countries and large islands) where it later established as an alien species. Based on the number and distribution of first records, we calculated metrics of spread between regions, which we termed “inter-regional spread”, and conducted statistical analyses to assess variations over time and across taxonomic groups. Results: Almost all (>90%) species introduced before 1700 are found in more than one region today. Inter-regional spread often took centuries and is ongoing for many species. The intensity of inter-regional spread increased over time, with particularly steep increases after 1800. Rates of spread peaked for plants in the late 19th century, for birds and invertebrates in the late 20th century, and remained largely constant for mammals and fishes. Inter-regional spread for individual species showed hump-shaped temporal patterns, with the highest rates of spread at intermediate alien range sizes. Approximately 50% of widespread species showed signs of declines in spread rates. Main conclusions: Our results show that, although rates of spread have declined for many widespread species, for entire taxonomic groups they have tended to increase continuously over time. The large numbers of alien species that are currently observed in only a single region are anticipated to be found in many other regions in the future
    • 

    corecore