
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Identifying, reducing, and communicating uncertainty in
community science
Citation for published version:
Probert, AF, Wegmann, D, Volery, L, Adriaens, T, Bakiu, R, Bertolino, S, Essl, F, Gervasini, E, Groom, Q,
Latombe, G, Marisavljevic, D, Mumford, J, Pergl, J, Preda, C, Roy, HE, Scalera, R, Teixeira, H, Tricarico, E,
Vanderhoeven, S & Bacher, S 2022, 'Identifying, reducing, and communicating uncertainty in community
science: A focus on alien species', Biological Invasions, vol. 24, no. 11, pp. 3395-3421.
https://doi.org/10.1007/s10530-022-02858-8

Digital Object Identifier (DOI):
10.1007/s10530-022-02858-8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Biological Invasions

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 01. Nov. 2022

https://doi.org/10.1007/s10530-022-02858-8
https://doi.org/10.1007/s10530-022-02858-8
https://www.research.ed.ac.uk/en/publications/f02ea35a-8675-4e9f-831c-7289c1299e19


Vol.: (0123456789)
1 3

Biol Invasions 
https://doi.org/10.1007/s10530-022-02858-8

REVIEW

Identifying, reducing, and communicating uncertainty 
in community science: a focus on alien species

Anna F. Probert  · Daniel Wegmann  · Lara Volery  · Tim Adriaens  · Rigers Bakiu  · 
Sandro Bertolino  · Franz Essl  · Eugenio Gervasini · Quentin Groom  · Guillaume Latombe  · 
Dragana Marisavljevic  · John Mumford  · Jan Pergl  · Cristina Preda  · Helen E. Roy  · 
Riccardo Scalera  · Heliana Teixeira  · Elena Tricarico  · Sonia Vanderhoeven  · Sven Bacher 

Received: 4 September 2021 / Accepted: 26 June 2022 
© The Author(s) 2022

has become a favourable framework for researching 
alien species where data on the presence, absence, 
abundance, phenology, and impact of species is 
important in informing management decisions. How-
ever, uncertainties arising at different stages can limit 
the interpretation of data and lead to projects fail-
ing to achieve their intended outcomes. Focusing on 
alien species centered community science projects, 
we identified key research questions and the relevant 
uncertainties that arise during the process of develop-
ing the study design, for example, when collecting 

Abstract Community science (also often referred to 
as citizen science) provides a unique opportunity to 
address questions beyond the scope of other research 
methods whilst simultaneously engaging communi-
ties in the scientific process. This leads to broad edu-
cational benefits, empowers people, and can increase 
public awareness of societally relevant issues such as 
the biodiversity crisis. As such, community science 
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the data and during the statistical analyses. Addi-
tionally, we assessed uncertainties from a linguis-
tic perspective, and how the communication stages 
among project coordinators, participants and other 
stakeholders can alter the way in which information 
may be interpreted. We discuss existing methods for 
reducing uncertainty and suggest further solutions 
to improve data reliability. Further, we make sugges-
tions to reduce the uncertainties that emerge at each 
project step and provide guidance and recommenda-
tions that can be readily applied in practice. Reducing 
uncertainties is essential and necessary to strengthen 
the scientific and community outcomes of community 
science, which is of particular importance to ensure 
the success of projects aimed at detecting novel alien 
species and monitoring their dynamics across space 
and time.

Keywords Biodiversity monitoring · Citizen 
science · Data quality · Epistemic uncertainty · 
Linguistic uncertainty · Non-native species

Introduction

Community science—also sometimes termed ‘citizen 
science’ or ‘volunteer biological recording’—refers 
to the form of scientific inquiry involving public par-
ticipation, usually through collaborative initiatives 
between volunteers and professional scientists (Jor-
dan et  al. 2015). For most community science pro-
jects, the aims are broadly twofold: to generate sci-
entific data, whilst simultaneously engaging and 
educating community members about science and 
their environment. From a research perspective, pub-
lic participation can benefit science, particularly in 
the stages of data collection and analysis, when prac-
tical caveats, such as lack of time, and economic or 
human resources, would represent a major constraint. 
This means that community science provides an alter-
native or complementary approach to address ques-
tions that otherwise would be logistically challenging 
or unfeasible under the common scientific framework 
(Dickinson et  al. 2012; Newman et  al. 2012; Pergl 
et al. 2020).

The scope and design of projects is usually deter-
mined by the primary objective, which may be 
more or less focused on generating scientific data or 
increasing education and community engagement, 
with the ultimate aim to lead to advances in both sci-
ence and public understanding of science through a 
collaborative partnership between multiple sectors of 
society. The level of public participation can be con-
sidered a spectrum: whilst some projects are concep-
tualised and completed entirely by members of the 
public who may lack scientific backgrounds—such as 
community conservation groups (Peters et al. 2016)—
others rely on a close partnership between community 
members and professional scientists, or alternatively, 
may be driven by professional scientists, involving 
the public only in the data collection stage (Haklay 
2013; Pocock et al. 2015). These different models of 
project design, the respective levels of involvement of 
community members and experts, and the skills and 
experience of participants can result in varying types 
and degrees of uncertainty, which has led to questions 
about the reliability of community science datasets 
(Aceves‐Bueno et al. 2017).

Uncertainty is an inherent part of scientific 
research; however, the way it is identified, understood, 
and handled can strongly influence the degree to 
which data may be interpreted and used (van der Bles 
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et al. 2019). It manifests due to limited knowledge—
usually from incomplete information in the data col-
lection stage and subsequent analysis of data—as well 
as through imprecise language at any stage of the 
research, where oral or written communication lan-
guage may be interpreted differently among individu-
als. Uncertainties in community science projects are 
often overlooked, sometimes completely ignored, and 
previous attempts to provide solutions usually only 
consider them from an analytical perspective, con-
centrating on only certain types of uncertainty (e.g., 
measurement error) (Bird et  al. 2014; Jiménez et  al. 
2019). Although the underlying uncertainties in natu-
ral conditions that arise using a community science 
approach do not differ from those under the common 
framework of science, they may vary in magnitude, 
either negatively or positively. For instance, as com-
munity science usually increases the “data collection 
power”, such projects may be expected to capture 
the natural variation of large-scale phenomena better 
than small-scale projects led by professional scientists 
(Baker et  al. 2019). On the other hand, by favour-
ing quantity, some community science projects have 
higher rates of measurement error or increased data 
collection bias compared to other approaches (Crall 
et  al. 2011; Gardiner et  al. 2012). Additionally, the 
bias and associated uncertainty resulting from poor 
experimental design is rarely quantified and consid-
ered in the analyses, although this is a problem that is 
not only associated with community science projects. 
Community science projects may underestimate the 
importance of setting a testable hypothesis and appro-
priate experimental design, which should consider 
trade-offs between data quality and data quantity; 
the design of community science projects is often a 
compromise between participation and data quality 
(Lewandowski and Specht 2015). These characteris-
tics of community science can limit the conclusions 
that can be drawn from the data obtained or lead to 
its misinterpretation. Further, uncertainty is seldom 
properly communicated, leading to potential misun-
derstandings and mistrust among researchers, stake-
holders and the public, and thus limits the use of data 
generated by community science projects in the deci-
sion-making process (Van der Bles et  al 2019; Van-
derhoeven et al. 2017).

Data generated by members of the public are now 
widely employed to monitor biodiversity and detect 
alien species in all environmental realms (Bois et al. 

2011; Pearson et  al. 2019; Perdikaris et  al. 2017; 
Pusceddu et al. 2019; Stuart-Smith et al. 2017). This 
has been largely facilitated by the development of 
online tools, dedicated websites and smartphone 
applications that provide a simple and engaging way 
for community science participants to record their 
data (Adriaens et al. 2015; Giovos et al. 2019; John-
son et  al. 2020; Rowley et  al. 2019; Santori et  al. 
2021). In many cases, engaging community mem-
bers in the data collection process may be the only 
practicable way to conduct large-scale or long-term 
studies or gain access to, and collect data in, difficult-
to-access sites (Lepczyk 2005). As such, community 
science projects provide a practical tool for address-
ing invasion-related questions that require spatial, 
temporal, and/or phenological information (Roy et al. 
2018), particularly in relation to post-border surveil-
lance (Thomas et  al. 2017). For instance, commu-
nity science has been used to delimit the distribution 
of alien species, during both the early (Eritja et  al. 
2019; Hourston et al. 2015) and late (Bois et al. 2011; 
Crall et  al. 2015) stages of invasion, to understand 
alien species’ range expansions (Grason et al. 2018), 
as well as temporal emergence patterns (Maistrello 
et al. 2016) and even to reveal impacts on native bio-
diversity (Mori et  al. 2019; Roy et  al. 2012). Given 
that community science projects often capture data 
opportunistically—particularly in the form of pres-
ence-only data—they may harbour large uncertainties 
that must be accounted for in downstream analyses 
(Bird et  al. 2014; Isaac and Pocock 2015; Petersen 
et al. 2021). Additionally, the overall spatial and tem-
poral data coverage from community science initia-
tives may be uneven; failing to account for this could 
make findings less robust for use in decision-making 
on the prevention and management of alien species.

The way uncertainty is communicated (or not) 
may affect trust in community science outcomes and 
ultimately decision-making that relies on commu-
nity science data (van der Bles et  al. 2019). Indeed, 
additional uncertainties may be introduced during the 
stage of communication. Many community science 
projects—though often implicitly—aim to achieve 
learning outcomes and increase the scientific literacy 
of their participants, which partly accounts for the 
engagement and motivation of volunteers (Jennett 
et  al. 2016). The project design and methods need 
to be explained to participants for a thorough under-
standing of their role and to ensure these learning 
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outcomes are achieved. This inherently includes com-
munication on how specific aspects of project design, 
such as the way data are collected, relate to methodol-
ogy to overcome biases and uncertainty. Furthermore, 
the endorsement of project results by other parties 
and societal actors equally requires open and trans-
parent communication in order to reduce uncertainty, 
maintain the credibility of the research and uptake of 
community science projects within the decision-mak-
ing process (Groom et  al. 2019; van der Bles et  al. 
2019).

We argue that to produce scientifically robust 
and societal-relevant conclusions, projects must be 
carefully designed to identify and reduce potential 
sources of uncertainties. The analysis of the result-
ing data must adequately account for the remaining 
uncertainty, and the uncertainty associated with the 
findings must be effectively communicated.

Here, specific recommendations are provided to 
help increase the robustness of ongoing and future 
community science research projects and to increase 
the reliability of their research outcomes. Consider-
ing the importance of community science in alien 
species research, we focus on the application of com-
munity science to biological invasions in support of 
decision-making. We aimed to (1) outline four com-
mon research questions community science projects 
address when studying different aspects of alien spe-
cies, then (2) identify the relevant sources of epis-
temic and linguistic uncertainty in the process of con-
ducting a community science project, and (3) provide 
suggestions on how to reduce and account for epis-
temic uncertainties based on project aims. Finally, 
we aimed to (4) provide recommendations for effec-
tive communication explicitly addressing uncertainty 
towards participants, stakeholders, and end-users of 
project results.

The main concepts and ideas were developed dur-
ing an interdisciplinary workshop, associated with 
the Alien CSI COST action working group, on the 
23–24th September 2019 in Ljubljana, Slovenia, com-
prising of experts in community science, invasion sci-
ence, social psychology, and statistics. The workshop 
was structured around the four topic sections of this 
paper (outlined above). Each topic was introduced 
by one presenter, then further developed in breakout 
groups of 4–6 individuals, followed by plenary dis-
cussions to collect and consolidate ideas, which then 
formed the basis for this work. This workshop was 

followed by a literature assembly and a consensus 
building process through the drafting of our work. To 
gain an overview of the current literature related to 
community science projects related to alien species, a 
search was conducted in the Scopus database in Feb-
ruary 2020 using Publish or Perish version 7 (Harzing 
2007) using the search string (“citizen science” OR 
“community science” OR “crowdsourcing science”) 
AND (“alien species” OR “exotic species” OR “intro-
duced species” OR “non-native species” OR “biolog-
ical invasions”). The resulting papers were screened 
and categorised as either relevant (i.e., papers that 
included any data derived from community scientists/
volunteer recorders related to some ecological facet 
of alien species that were not review or overview 
papers) or irrelevant (i.e., papers that only used com-
munity science to assess native species or those that 
were related to accuracy or other human elements of 
community science). The remaining papers were then 
evaluated to identify key questions addressed and to 
determine whether expert verification of data was 
performed prior to analysis (see Supplementary mate-
rial). Our search returned 194 papers, of which there 
was one duplicate entry and two inaccessible docu-
ments that were removed. Of the remaining, 83 were 
not considered relevant based on our criteria.

Here, we distinguish between professional sci-
entists/experts and community scientists/volunteer 
recorders, adopting this terminology. However, we 
recognise that the expertise among participants of 
community science projects will vary greatly; some 
volunteer recorders may possess extensive knowl-
edge relating to the study system and can indeed be 
considered experts that make more accurate and reli-
able observations, reducing data uncertainty. Further, 
whilst we acknowledge that volunteer recorders often 
play an important role in the management of alien 
species, we do not cover this here. Rather, we focus 
on the data collection and subsequent analysis and the 
communication of research findings.

Project aims and key questions addressed in 
community science projects on alien species

Across the field of alien species research, we identi-
fied four key aims commonly addresses in the com-
munity science projects; these aims are largely driven 
by the need for information in decision-making on 
alien species policy and management. These were 
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first identified during the workshop and then sup-
ported through our Scopus search (see Supplemen-
tary material).

To answer the research questions we identified, 
certain types of data must be generated e.g., presence 
data, abundance data, temporal data. Each of these 
can be subject to certain types of uncertainty, mean-
ing that appropriate measures to reduce these should 
be considered. These are discussed further below.

 (i) Presence and distribution: The first aim 
relates to verifying the presence of an alien 
species in a geographic area, addressing the 
question “does species A occur here”? This is 
relevant in terms of both species detection (i.e., 
detecting new incursions or confirming absence 
after a management intervention) and delimit-
ing species distributions. Engaging community 
members in the surveillance of alien species 
means ‘many eyes on the ground’ and may 
facilitate early detection of novel species incur-
sions (Ministry for Primary Industries 2016; 
Thomas et  al. 2017), which can be a critical 
factor in eradication success (Vander Zanden 
et al. 2010; Wotton et al. 2004; but see Pluess 
et  al. 2012). The early detection of alien spe-
cies has been aided using smartphone and web 
applications allowing volunteer recorderss to 
submit species occurrences and obtain taxo-
nomic verification in real-time (Moulin 2020). 
Additionally, delimiting the distributions of 
some alien species has only been possible 
due to public participants reporting sightings, 
which in certain cases may be more effective 
than common biological monitoring techniques 
(Goldstein et al. 2014).

 (ii) Abundance: The second aim relates to evaluat-
ing the abundance of a specific alien taxon in 
areas in which it is known to occur. Estimates 
of abundance can be useful to understand the 
impact of alien species (Parker et  al. 1999; 
Sofaer et  al. 2018) and are important data to 
plan and evaluate management interventions. 
For harmful alien species for which eradication 
is no longer possible, maintaining populations 
below an ecological damage threshold might 
provide the most cost-effective management 
solution if feasible (Green et  al. 2014; Rob-
ertson et  al. 2020). Defining such thresholds 

requires some form of damage-density relation-
ship and abundance data. Abundance estimates 
are therefore important to inform the manage-
ment of alien species (Bradley et  al. 2018). 
Measurements may be in terms of either the 
density (i.e., how many alien individuals are 
there in a given area?) or relative abundance 
(i.e., how many alien individuals are there 
in relation to native species of concern, e.g., 
parasites on a host or a plant). Information on 
relative abundance may also help understand-
ing whether only vagrant/casual individuals 
are present, or whether an established popula-
tion occurs. Community science projects that 
simultaneously assess the abundance of alien 
and native species are especially informative to 
assess impacts of alien species on biodiversity 
(see point iv).

 (iii) Trend:  The third aim relates to questions 
regarding a change—in either the abundance or 
the spatial distribution of a species—by ensur-
ing some components of the temporal or spatial 
variation are captured in the data. Community 
science projects can be particularly useful for 
research addressing spread dynamics over large 
spatio-temporal scales (Preuss et al. 2014; Roy 
and Brown 2015), which would otherwise be 
unattainable. For instance, in Britain and Bel-
gium researchers have been able to track the 
spread of the harlequin ladybird (Harmonia 
axyridis) with a large-scale community sci-
ence survey (Adriaens et al. 2008; Brown et al. 
2018). In Portugal and Italy, community sci-
ence data revealed expansion rates of the Asian 
hornet (Vespa velutina nigrithorax) and the 
brown marmorated stink bug (Halyomorpha 
halys), respectively, facilitating the develop-
ment of appropriate management strategies at 
the regional level (Carvalho et al. 2020; Mais-
trello et al. 2016). Given the predicted general 
increase in the number of alien species world-
wide (Seebens et  al. 2020) and the way pro-
jected climate change is expected to alter spe-
cies distributions (Essl et al. 2019), community 
science data will certainly play a central role in 
informing future predictive models (Kress et al. 
2018).

 (iv) Impact:  The fourth aim relates to identifying 
the impacts of alien species. In cases where 
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impacts are investigated, they are often inferred 
from correlations with affected native species 
in terms of population trends, namely abun-
dance, and distributional changes, or in some 
cases, other indirect measures such as numbers 
of dead trees or water quality (Colléony and 
Shwartz 2020; Diamond and Ross 2019; Guyot 
et al. 2015; Koenig et al. 2013; Roy et al. 2012). 
Such trends should be interpreted with cau-
tion as multiple causative agents of the decline 
of native species and populations may not be 
captured in the study (Byers 2002), potentially 
leading to an overestimation of alien species 
impact. However, information on spatio-tem-
porally co-occurring species, including spe-
cies from the same guilds, host or food plants, 
overlapping phenology etc., is useful to assess 
potential impact of an invader. For instance, 
Adriaens et al. (2008) calculated niche overlap 
indices which informed ecological risk assess-
ment for an invasive alien ladybird (Kenis et al. 

2017). Future focus on the interactions between 
native and alien species may be more informa-
tive for discerning impacts of alien species, 
particularly alongside mechanistic experimen-
tal studies.

Identifying the different sources of uncertainty in 
community science projects

Before addressing the different sources of uncer-
tainty, it is important to understand the process of 
scientific inquiry in order to identify where uncer-
tainty can emerge and propagate to subsequent steps. 
We created a conceptual figure to demonstrate how 
community science projects can follow a general-
ised process of scientific inquiry, allowing potential 
sources of uncertainty to be identified at the various 
steps (Fig. 1). First, the occurrence of a phenomenon 
related to an alien species will initiate the motivation 
to ask a scientific question (Fig.  1; A). Identifying 

Fig. 1  Schematic of a generalised scientific process identify-
ing where differences sources of uncertainty emerge in context 
to community science projects related to alien species. The dif-
ferent steps, or actions, are outlined and encapsulated within 
ovals, whereas the text in rectangles indicate outcomes gener-
ated by the actions. The process begins at A., with the occur-
rence of some phenomenon (e.g., arrival, spread) of an alien 
species to be investigated. Sources of uncertainty (Regan et al. 
2002) are indicated where they arise across the process: the 
specific types of epistemic uncertainty are listed and linguistic 
uncertainty is identified in general. During the communication 
for both data collection (Step 3) and the results (Step 8), sub-

jective judgement is relevant as it may influence the message 
made by the communicator(s) and thus the way the recipient 
audience perceives the information. The asterisks  at  ‘Iden-
tify question/aim’ (Step 1.) and  between the ‘Data’ (B.) and 
‘Data analyses’ (Step 6.) stages, indicate that for some pro-
jects, research questions may be generated post-data collection 
(e.g., projects that data mine biological databases). The dashed 
lines represent the potential for information learnt during any 
stage of the process to be integrated into subsequent actions 
for longer-term projects allowing the process to become refine-
ments and improvements to be incorporated



Identifying, reducing, and communicating uncertainty in community science: a focus on alien…

1 3
Vol.: (0123456789)

this question and developing a study to investigate 
the phenomenon (Fig. 1; Steps 1 and 2) may be done 
before data collection (Fig. 1; Step 4), either by pro-
fessional scientists, community members or through 
co-creation. Alternatively, data may already exist, for 
example in online biodiversity databases, in which 
case considering the steps prior to the stage of data 
analyses become less relevant as fewer sources of 
uncertainty may be controlled. After data have been 
gathered, they may or may not be verified by experts 
(Fig.  1; Step 5), prior to analysis and interpretation 
(Fig. 1; Steps 6 and 7). This information is then ulti-
mately communicated to stakeholders and sometimes 
the scientific community, for instance in the form of a 
report or publication (Fig. 1; Step 8; D). For projects 
spanning longer temporal scales, information learnt 
during the process may be integrated into subsequent 
actions allowing the refinement and improvement of 
the different stages via a feedback loop. It is impor-
tant to note that uncertainties arising at each step can 
propagate to the following research steps, and thus 
become compounded at the subsequent stages.

Using the taxonomy of uncertainty outlined by 
Regan et  al. (2002)—where uncertainty sources are 
classified as either linguistic or epistemic (Table 1)—
we identify where different sources of uncertainty 
emerge during the process of scientific inquiry, in the 
context of citizen science for alien species research 
(Fig. 1).

Linguistic uncertainty

During any step of the project that requires commu-
nication, uncertainty can manifest through impre-
cise language (from the communicator(s)) or mis-
understanding (audience), leading to confusion and 
misinterpretation of messages (Fig.  1; Steps 3 and 
8). Linguistic uncertainties are not mutually exclu-
sive; that is, words and phrases may comprise more 
than one of the different types of linguistic uncer-
tainties (Table  1). For example, a phrase may be 
simultaneously vague and ambiguous, or ambigu-
ous and contain uncertainty due to lack of specific-
ity. It is important to note that linguistic uncertainty 
from communicators can amplify uncertainty due 
to subjective judgement (see section on epistemic 
uncertainties below) which arises due to the indi-
vidual interpretation of information by the audience. 
Given that subjectivity refers to personal feelings and 

opinions rather than facts it may be fair to expect that 
inputs of uncertainty due to subjective judgement will 
be magnified through the participation of many indi-
viduals during data collection when compared to pro-
jects under the common scientific framework.

The first step where linguistic uncertainties will 
initially be introduced is during the ‘Communica-
tion for data collection’ stage (Fig. 1; Step 3), where 
project coordinators will specify information pertain-
ing to the project, such as the rationale behind the 
research and the methods in which they require par-
ticipants to collect data. Under the common scien-
tific framework, communication is usually restricted 
to far fewer data collectors that would be recruited 
based on their level of expertise to collect data and 
are usually provided with in-person training. The 
increased expertise acquired through training and 
the lower number of people involved makes it easier 
to control for linguistic uncertainties. The subse-
quent step involving communication where linguis-
tic uncertainty can arise is at the ‘Communication of 
the results’ step (Fig.  1; Step 8), when the findings 
of the project are communicated either in the form 
of a report or directly to an audience. The types of 
linguistic uncertainty relevant here differ from other 
scientific projects in the sense that they might require 
communication to a broader audience. For instance, 
findings from community science projects addressing 
alien species may be published in academic journals 
or communicated by other means to decision mak-
ers and stakeholders. Most importantly, results and 
project conclusions should be communicated to all 
participants in a way that can be clearly understood 
regardless of their individual level of expertise and 
scientific knowledge (see section four).

A key consideration is that scientific terminology 
may be unfamiliar and interpreted differently by com-
munity science participants due to the uncertainty 
associated with technical terms and phrases. Indeed, 
similar problems arise within the use of ordinary lan-
guage where definitions can have varying meaning 
due to cultural differences. This is particularly appli-
cable to the invasion science lexicon which is known 
for its value-laden terminology in some contexts 
(Verbrugge et  al. 2016). For example, although the 
terms ‘alien’, ‘exotic’ and ‘non-native’ are frequently 
used interchangeably, research has demonstrated that 
‘exotic’ is more often perceived more favourably and 
associated with beneficial impacts (Kapitza el al. 



 A. F. Probert et al.

1 3
Vol:. (1234567890)

Table 1  Epistemic and linguistic uncertainties (Regan et al. 2002) relevant to community science in context of research addressing 
alien species

Epistemic uncertainties
Natural variation
Relates to the changes (usually related to space and time) which are naturally and inherently present but often difficult to pre-

dict. Community science projects may be able to help reduce such biases, particularly related to natural spatial variation, by 
upscaling data collection.

Example: Populations of alien species vary in different demographic attributes due to natural changes in fecundity and mortal-
ity.

Measurement error
Occurs due to imperfect measuring equipment and observation techniques, including when the individual and/or equipment 

causes the error.
Example: A participant under- or over-estimates the number of individuals of a species on site. The Global Positioning Satellite 

(GPS) of a smartphone is slow and records an observation in a different kilometre square or with high associated coordinate 
uncertainty.

Systematic error
Arises due to biases in sampling procedure or measuring equipment.
Example: For example, two species A and B look relatively similar. A volunteer recorder consistently records the presence of 

species A as the presence of species B as they do not realise that there are two different species; or, a volunteer recorder incor-
rectly sets up a GPS device and now all locations that the participant records are systematically wrong.

Model uncertainty
Results from the necessity to represent the ‘true’ situation through the use of simplified models. Model uncertainty is gener-

ated from the fact there are a multitude of drivers that affect a process, and we will never capture the true scenario. Model 
uncertainty may be reduced through model validation methods (Zurell et al. 2010) and ensuring that findings are interpreted 
within the limits of the model.

Subjective judgement
Arises through the interpretation of information. This is relevant from the perspective of both the project co-ordinators and the 

audience (e.g., volunteer recorders) receiving the information. Linguistic uncertainties may exacerbate subjective judgement.
Example: A scientist believes that changes caused by an alien species in an ecosystem (e.g., soil pH) are generally deleterious 

for native species and therefore describes them in the report as detrimental for the ecosystem.
Linguistic uncertainties
Vagueness
Language that permits borderline cases; common when using linguistic categories that underpin continuous measurements.
Example: Asking volunteer recorders to provide linguistic size class categories, such as small, medium and large, for a specific 

species observation, may lead to inconsistencies.
Context dependence
When the context under which something is required to be completely understood is absent.
Example: Species may be thought of as either native or alien, depending on their geographical range. For instance, species 

translocated within a country may be perceived as native by some yet alien by others. Understanding the native range is nec-
essary for context to determine if it is alien.

Ambiguity
Where more than one meaning for a word or phrase may be interpreted and it is not clear which meaning is correct.
Example: The term ‘invasive’ can be interpreted differently as current definitions use it to refer to alien species that are estab-

lished and widespread across a landscape with no reference to impact, or alternatively, alien species that are perceived to have 
deleterious impacts.

Under specificity
When there is an unwanted generalism and information is not clear due to the lack of detail.
Example: Failure to clearly explain to project participants the level of details necessary for each species observation may lead to 

incomplete records and data gaps.
Indeterminacy of theoretical terms
Occurs because language is imprecise, and words can change meaning with time.
Example: Species names (both their scientific nomenclature and common names) can change over time, causing confusion to 

those who were aware of their previous names.
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2019). Thus, carefully selecting the terminology used 
will be important to consider for projects that involve 
individuals from wider geographical scales and par-
ticularly if projects necessitate information being 
translated into additional languages.

Epistemic uncertainty

In any scientific project, epistemic uncertainty is 
always present as natural variation in the observed 
phenomenon (Fig.  1; A; Table  1). Because com-
munity science projects can facilitate the collection 
of data over greater spatial and temporal scales due 
to the increased ‘people power’, such uncertainties 
may be better accounted for compared to other less-
intensive studies. Whilst experts are thought to con-
sistently collect high quality data with reduced meas-
urement error, numerous studies have demonstrated 
community members can have similar capabilities 
in terms of both accuracy and reliability (Crall et al. 
2011; Kallimanis et al. 2017). However, this is highly 
dependent on the study system and research ques-
tion at hand, given that some species will inherently 
be more difficult to detect and/or identify than others 
(Brandon et al. 2003; Forrester et al. 2015). Addition-
ally, poorly communicated background information 
and instructions may lead to confusion and inconsist-
encies among volunteer recorders during the data col-
lection stage.

In all studies, epistemic uncertainty arises dur-
ing the data collection. Here, these uncertainties will 
most notably arise in the form of measurement error, 
systematic error, and subjective judgement (Fig.  1; 
Step 4; Table  1). Compared to studies conducted 
under the common scientific framework it might be 
expected that such uncertainties are amplified given 
the increased number of individuals contributing to 
data collection. In community science projects, there 
are more chances for individual observer-level error 
to be introduced during the data collection (e.g., misi-
dentification of a species) and recording (e.g., incor-
rectly entering data into a spreadsheet). This intro-
duces additional variation when compared to other 
methods linked to when, where and what volunteers 
record (Boakes et  al. 2016). Furthermore, the intro-
duction of subjective judgement may lead to taxo-
nomic, geographic, and temporal biases. For instance, 
observer preferences for particular taxa—which can 
be influenced by culturally related preferences or 

individual interests (Ressurreição et al. 2012)—result 
in detection biases. In this sense, subjective judge-
ment can create systematic error whereby individu-
als will intentionally include or exclude observations. 
Such biases have been demonstrated by Caley et  al. 
(2020), who found volunteer recorders tended to pref-
erentially log opportunistic insect occurrence reports 
for species with more striking physical features. Simi-
larly, volunteer recorders may be more likely to visit 
some localities over others for various reasons, such 
as their proximity to home, ease of access or prefer-
ence of habitat type (Petersen et al. 2021; Tye et al. 
2017), leading to data with strong spatial biases 
(Geldmann et al. 2016). There may also be biases in 
the weather conditions or time of day and year when 
volunteer recorders collect the data (Baker et  al. 
2019); these spatial and temporal biases can lead to 
natural variation being poorly captured in the data, 
creating knowledge gaps (Regan et  al. 2002). Addi-
tionally, Boakes et  al. (2016) showed the recording 
behaviour itself can introduce bias which is consid-
ered separately from volunteer’s natural preferences 
for taxa and places. This is certainly relevant for the 
recording of high-profile invasive alien species which 
receive a lot of media coverage, are often well known 
to everyone and therefore have a higher recordability.

Subsequent forms of epistemic uncertainty arising 
after data collection include model uncertainty during 
the stage of data analyses (Fig. 1; Step 6) and addi-
tional subjective judgement arising when research 
findings are interpreted and communicated (Fig.  1; 
Steps 7&8). Model uncertainty is inherent to all sci-
entific research given the necessity to describe bio-
logical phenomena using simplifications. Every time 
we collect data to make inferences to describe the 
true state, natural variation leads to model uncertainty 
(Regan et  al. 2002). Once data have been analysed, 
subjective judgement is generated by the project 
coordinators when they interpret data and communi-
cate findings and when the audience (e.g., volunteer 
recorders) interprets this information (Fig. 1; Step 8; 
D).

Reducing uncertainty

All research will inevitably be associated with vari-
ous forms of uncertainty; however, if these are appro-
priately considered—in terms of where and why they 
arise—different approaches may be taken to reduce the 
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overall uncertainties that may be relevant when design-
ing a project and during the downstream data analy-
ses. We recognise that linguistic forms of uncertainty 
(Table  1) are of great importance given their ability 
to contribute to the emergence of subjective judge-
ment among participants (see section above). Thus, our 
overall recommendation to reduce forms of linguistic 
uncertainty and subjective judgement in this context is 
to be mindful of the language during all stages where 
communication is involved. Specifically, avoiding the 
use of jargon-laden language where possible and in 
cases where this is unavoidable, providing simple, 
clear and concise definitions for scientific terms. Ide-
ally, a reciprocal dialogue between participants and 
project coordinators should be established to allow 
volunteer recorders to ask questions and clarify aspects 
they may not initially understand. In doing so, the com-
munication approach may be refined in the future as 
the feedback is integrated into the project (Fig. 1).

Below, we focus and discuss different ways to 
reduce epistemic uncertainty by: (i) increasing the 
quality of data generated by participants, (ii) choos-
ing an appropriate experimental design to account 
for uncertainty in the analyses, while we provide (iii) 
specific examples to account for uncertainty.

Increasing quality of data generated by participants

The ability of community science participants to accu-
rately collect data will depend largely on the question 
to be addressed. Some projects require participants 
to have more specific identification skills that may be 
improved through training or practice alone (Gallo and 
Waitt 2011; Kampen et al. 2015; Starr et al. 2014). One 
major issue is that, generally, novice volunteer record-
ers are more likely to misidentify or overlook species 
compared to professional scientists (Austen et al. 2016; 
Falk et al. 2019; Galloway et al. 2006), which can lead 
to uncertainty in single observations regarding species 
identification and presence at specific locations. The 
ability to accurately detect and identify species may 
vary significantly among volunteer recorders depend-
ing on the individual skills of  participants; for instance, 
some individuals may be amateur experts with abilities 
equal to professional scientists. Importantly, however, 
it should be noted that some biases may become more, 
or less, prevalent as the skill-level increases among 
participants. For instance, Farmer et  al. (2012) found 
a tendency for more false positives of rare species to 

be recorded by participants with higher expertise. In 
contrast, Groom and Whild (2017) found false posi-
tives to be uniformly distributed among observers of 
different expertise, yet both studies reported higher 
frequencies of false positive detections for rarer species 
when compared to more common species. Increasing 
participants’ observational skills, in the aim of reduc-
ing false negative and false positive detections, may be 
directly addressed by providing training and feedback 
(but see Feldman et al. 2018), although such an option 
is often not feasible for many community science pro-
jects. In some cases, the development of online tools 
to support learning may provide an accessible way to 
improve community science skills as well as to pro-
mote engagement and reach educational goals. Online 
tools that provide volunteer recorders a platform to 
interact (e.g., iNaturalist; www. inatu ralist. org) may 
also help to increase individual competencies through 
peer feedback.

Currently, the majority of community science 
projects focusing on the recording of alien species 
have a verification step, whereby data collected by 
participants (most often images or specimens) are 
confirmed by experts (Schade et al. 2019; Wiggins 
et al. 2011; Supplementary material). For example, 
during a survey on 103 alien species community 
science projects in Europe, 89 projects indicated 
using validation procedures (Alien-CSI consor-
tium, (Price-Jones et al. 2022)). Generally, the most 
prominent approaches for validation of community 
science data are expert- and peer-validation, some-
times aided by automatic filtering techniques (e.g., 
through data mining algorithms, artificial intelli-
gence) which can address random variation, such as 
outlier detection (Balázs et al. 2021; Wiggins et al. 
2011). Model-based quality assessment can tackle 
errors using an explicit model of variation in space 
and time. For example, Kelling et  al. (2015a, b) 
indexed eBird (www. eBird. org) observers variabil-
ity using species accumulation curves to account for 
observer skill and improve data quality post-hoc. 
The relatively labour-intensive step of data verifi-
cation is often necessary to ensure data quality, but 
future identification will likely become more effi-
cient through the use of machine learning based on 
imagery, acoustics, and environmental DNA at both 
the individual and landscape-level (Demertzis et al. 
2018; Demertzis and Iliadis 2017; Kganyago et  al. 
2018; Milián‐García et al. 2021; Terry et al. 2020).

http://www.inaturalist.org
http://www.eBird.org
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Choosing an experimental design that allows errors 
to be estimated and accounted for downstream

When considering the experimental design for a 
project where a community scientist will survey 
a specific location (or site) for the presence of an 
alien species, we can distinguish two types of obser-
vation errors (Fig.  2): the alien species is present 
but is not detected/identified (i.e., a false negative 
detection), or the alien species is not present but 
recorded due to misidentification or false reporting 
(i.e., a false positive detection). Although proper 
training can minimise these errors, they are unlikely 
to be eliminated and therefore need to be accounted 
for statistically, especially for species and life stages 
not easily identifiable. This is possible if the rates at 
which these errors occur are either known or can be 
learned from the data, with the possibility of the lat-
ter depending on the experimental design (Fig. 3).

Error rates of any kind may only be learned from 
replicate data points. Take, for example, a volunteer 

recorder visiting the same location multiple times. 
If the alien species is present at that location, the 
fraction of visits at which it was not detected pro-
vides information about the rate of false negatives. 
Similarly, if a volunteer recorder reports the alien 
species at several locations from which no other 
volunteer recorder has ever detected it, that indi-
vidual must either be superior at detection or oth-
erwise misidentifies the species frequently. A key 
realisation from this is that error rates can only be 
learned properly if absence data are collected: if a 
volunteer recorder only reports visits that resulted 
in an observation, the data contains no information 
about the probability of detection. In cases where 
absence data (i.e., non-detections) cannot be col-
lected directly, they may be estimated, for instance 
through observer characteristics such as reports of 
common species, the number of visits to a location, 
the length of a species list or other such covariates 
(e.g., Bradter et  al. 2018; Kelling et  al. 2015a, b; 
Lele et al. 2012).

Fig. 2  Two forms of detection error illustrated using an exam-
ple of an alien frog at a specific location. False negatives (Type 
II error) occur when an observer does not detect the target 
species  (the “green” frog) that was indeed present,  because 
i) observers are looking in the wrong place (e.g., the species 
occurs on plant A, but the observer only looks on plant B), or 

the species is ii) cryptic or hidden, or, iii) incorrectly identified 
(in our example, the target species is misidentified as another 
species). False positives (Type I error) occur when an observer 
incorrectly detects the target species (usually based on a misi-
dentification – here, the “spotted” frog is mistaken for the tar-
get species)
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In the case of high error rates, uncertainty may be 
reduced by focusing on hierarchical parameters, i.e., 
model parameters that govern other parameters of 
the model (Box 1). The reason is that for hierarchical 
parameters, many data points are collectively informa-
tive, and this information can be exploited if error 
rates are either known or can be estimated accurately 
from the data. The fraction of locations at which an 
alien species is present, for instance, may be estimated 
accurately, even if the presence at individual locations 
is highly uncertain (Box 1). When designing commu-
nity science projects, we thus recommend identify-
ing the most relevant hierarchical parameters and to 
choose an experimental design most suitable for those.

Accounting for uncertainty: specific examples

In the following section, we discuss approaches to 
learn and account for detection errors when assessing 
the distribution, abundance, and trends of alien spe-
cies, related to each of the key project aims identified 
above.

Distribution: We distinguish two experimental 
designs to delineate the distribution of alien species. 
In the first design, volunteer recorders are asked 
to report potential sightings of the alien species 

without being instructed where to look. In the sec-
ond design, volunteer recorders are asked to survey 
specific locations and to report whether or not the 
alien species was detected (e.g., Epps et  al. 2014). 
These designs differ fundamentally in the error 
rates that may be learned. Since non-detections are 
not reported in the first design, no information on 
search effort is available, meaning we cannot infer 
error rates from these data alone. This is a general 
problem of presence-only data, and existing meth-
ods to infer species distributions from such data 
assume that presences and absences are predicted 
well by ecological covariates (e.g., Guisan et  al. 
2017; Renner et al. 2015). For rare alien species at 
the beginning of their invasion, however, environ-
mental covariates may not be good predictors: their 
relatively recent introduction means they have likely 
only covered a small, and not necessarily repre-
sentative, part of their environmental niche space. 
Inferring the spatial distribution of an alien species 
under such an experimental design thus requires 
the verification of reports and evidence by experts 
unless search effort can be estimated from other 
covariates such as reports of more common species, 
the number of visits, or the species list length (Isaac 
et al. 2014; Szabo et al. 2010).

Fig. 3  Detection biases may be accounted for by obtaining 
information about individual observer’s detection rates. Some 
observers may be more likely to detect a species. To learn error 
rates, studies should be designed such that different locations 

are visited by more than one observer (illustrated by figures of 
different colours). Not all projects will lend themselves to such 
a design; there may be few participants and/or participants may 
be unable to visit multiple locations
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By contrast, when non-detections are reported 
along with detections, error rates and species distri-
butions can be estimated jointly. Occupancy mod-
els (MacKenzie et  al. 2002) are the most frequently 
applied method to achieve this using community 
science data (reviewed extensively in Altwegg and 
Nichols 2019; Dennis et  al. 2017; van Strien et  al. 
2013). The measure of interest under these models is 
the distribution of presences (occupancy) or absences 

of a species at surveyed locations, which are learned 
while accounting for false negatives by explicitly 
modelling and learning detection probabilities. Under 
the assumption of no false positive detections, these 
detection probabilities are readily learned if locations 
were surveyed multiple times: if the alien species was 
detected at a location at least once, all surveys at that 
location that did not result in detections must be false 
negatives (MacKenzie et al. 2002).

Box 1  Inferring hierarchical parameters

As an example, consider a project in which volunteer recorders report detections and non-detections of an alien species at a 
large number of locations. Rather than inferring whether a location is occupied (i.e., the alien species is present) for each loca-
tion individually, such data may be modelled using hierarchical parameters that govern the distribution of occupied locations. 
For instance, one might introduce the hierarchical parameter � that reflects the fraction of locations that are occupied.

To illustrate this, consider a project in which volunteer recorders visit L locations m times each. Let di reflect the number of 
visits at location l = 1,… ,L that resulted in a detection, and the remaining m − dl in a non-detection. Let us further denote by 
zl wheter location l is occupied ( zl = 1) or not ( zl = 0) and by �10 and �01 the false negative and false positive detection rates, 
respectively. Under this model,

P
�
dl�zl, �01, �10

�
=

⎧⎪⎨⎪⎩

�
m

dl

�
�
dl
10

�
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�m−dl if zl = 0,�
m
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��
1 − �01

�dl
�
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01

if zl = 1.

As an example, we consider the case with m = 5 visits per location, �01 = 0.1 and �10 = 0.7 . As shown in Fig. 4A, accurately 
identifying occupied locations is difficult under these parameters: the most likely data at occupied locations is dl = 1 , which is 
almost equally likely to get at non-occupied locations as well.

To infer the hierarchical parameters � , �01 and �10 , we integrate out zl to obtain the relevant likelihood
P
�
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In Fig. 4B,C, we show Bayesian estimates of the parameters � , �01 and �10 from data simulated at L = 100 , L = 1, 000 or 

L = 10, 000 locations, confirming that these hierarchical parameters can be inferred rather accurately if sufficient locations 
were surveyed. Importantly, however, error rates can only be accurately learned if there are enough sites with multiple detec-
tions and hence sufficiently many visits. For a fixed number of visits, estimation errors are therefore minimized for intermedi-
ate number of visits per location, for the error rates chosen here at about m = 20 (Fig. 4D).

Fig. 4  Illustration of the hierarchical model from Box 1 with 
parameters � = 0.3 , �01 = 0.1 and �10 = 0.7 (dashed vertical 
lines). A: expected distributions of the number of reported 
detections at occupied (filled, orange) and not occupied loca-
tions (open, black) for m = 5 visits per location. B and C: Pos-
terior distributions on � (B), �01 (C, black) and �10 (C, orange) 
for data simulated at L = 10

4 (solid), L = 10
3 (dashed) and 

L = 10
2 (dotted) locations with m = 5 visits each. D: Accuracy 

of inferring � as quantified by the root mean squared devia-
tion (RMSD) of the posterior means of � across 100 replicate 
simulations for different combinations of locations L and vis-
its m for Lm = 10

5 (solid) and Lm = 10
4 (dashed) total number 

ofvisits
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Occupancy models may also account for varia-
tion in detection rates among observers, but only if 
observers conduct surveys at different locations: if 
an observer surveys only a single location but never 
detects the target alien species, it may be because the 
alien species is not present at this location, or because 
the probability of the observer detecting the species 
is low (i.e., a high false negative error rate). The lat-
ter would be concluded if the same observer reported 
non-detections at locations where others did spot the 
alien species. If such a design is not feasible, varia-
tion in detection rates may still be accounted for by 
modelling them through covariates correlated with an 
observer’s level of training, the search effort spent at 
a location, or both (Johnston et al. 2018; Altwegg and 
Nichols 2019).

If the number of surveys per location is too low 
to accurately infer local presences or absences, hier-
archical parameters may be learned. These typically 
include the fraction of locations at which an alien 
species is present, and ecological covariates predict-
ing local presences and absences (Johnston et  al. 
2018; Altwegg and Nichols 2019). Compared with 
other species, however, the latter may be less useful 
for recently introduced alien species as their distribu-
tion may be less determined by characteristics of the 
environment but more by their introduction history 
and patterns of dispersal.

Classic occupancy models generally assume no 
false positives or that false positive rates are known. 
The reason is that false positives cannot be distin-
guished from true positives from reported detec-
tions alone. However, false positives are common 
in community science data, particularly for studies 
that aim at detecting recently introduced and hence 
rare alien species that are therefore easily misidenti-
fied (Groom and Whild 2017). To learn false positive 
rates in an occupancy setting, additional informa-
tion must be available, either in the form of ground-
truth at a subset of locations, or confirmed detections 
(e.g., by requesting to upload pictures of the observed 
individual(s) (Chambert et  al. 2015; Vantieghem 
et al. 2017). The latter approach may be particularly 
appealing for community science data of recent inva-
sions in which false positive rates are likely high, but 
a fair number of reported detections can be confirmed 
by experts.

Abundance: Inferring abundance is more chal-
lenging than occupancy: in the absence of false 

positives, a single detection is sufficient to identify a 
location as occupied, but a single detection may indi-
cate a low abundance, a low detection probability, or 
both. If detection rates are low, however, variation in 
the frequency of detections at a location does provide 
information about variation in abundances between 
locations. The Royle-Nichols model (Royle and Nich-
ols 2003), for instance, captures this information by 
assuming detection rates to scale exponentially with 
abundances. These models require the same experi-
mental design as classic occupancy models.

If an abundance survey is targeted to locations at 
which the alien species is expected to be common 
(i.e., there are numerous individuals), most visits 
might result in detections. In these cases, simple 
presence-absence data are not sufficient to distin-
guish locations. Rather, observers should provide 
an estimate of abundance. These estimates may be 
from direct observations such as the number of indi-
viduals or a measure of vegetation cover, biomass 
or density, or from indirect observations such as the 
number of nests, the presence or frequency of fae-
ces or tracks, or a browsing index. The aforemen-
tioned count data, however, do not lend themselves 
easily to infer error rates as the parameters regard-
ing abundances and detection probabilities are con-
founded: a low abundance location surveyed with 
a high detection probability may result in the exact 
same number of observations as a high abundance 
location surveyed with a low detection probability. 
As a result, joint estimates of abundances and detec-
tion probabilities are associated with large uncer-
tainty, even from a large number of replicates (Das-
Gupta and Rubin 2005, Box 2, Fig. 5A). As shown 
in Box 2, it may therefore be advisable to infer rela-
tive abundances only, as these can be learned more 
accurately and jointly with relative detection prob-
abilities if observers visit multiple locations or if 
relative detection probabilities are well character-
ised by covariates, as was recently shown for cam-
era trapping data (Ait Kaci Azzou et al. 2021).

In some cases, removal models may be appropri-
ate for estimating population sizes in tandem with 
management efforts and community science partici-
pants. Modelling the removal (i.e., the depletion) of 
individuals of a population within a given area can 
enable the estimation of an unknown population size 
(Zippin 1958). This method requires coordinated 
removal efforts and thus would be highly suitable in 
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Box 2  Estimating relative abundances

Consider a survey designed to quantify the abundances Nl at locations l = 1,… ,L from abundances reported by observers 
j = 1,… , J from a total of V  visits. Let dv denote the reported abundance during visit v = 1,… ,V  conducted at location lv by 
observer ov . Here, dv is affected by both the abundance Nlv

 at location lv as well as by the detection probability pov of observer 
ov such that

P
(
dv|Nlv

, pov

)
=

(
Nlv

dv

)
pov

dv (1 − pov )
Nlv

−dv

is given by binomial sampling. Since Nlv
 and  pov are confounded, estimating them individually is difficult (DasGupta & Rubin 

2005). To illustrate this, consider a case with two locations with N1 = 100 and N2 = 200 surveyed m = 5 times each by a 
single observer with detection probability p = 0.2 . As shown in Fig. 5A, the uncertainty associated with abundance estimated 
from that data under mild priors N1,N2 ∼ Exp(0.001) spans about two orders of magnitude. This is because the data is well 
explained by pretty much any abundance if paired with a corresponding detection probability and more informative priors 
would be required to constrain the range of possible values. However, there is considerable evidence that N2 is about twice N1 
(Fig. 5B), illustrating that relative abundances may be learned accurately from such surveys.

To benefit from this in a realistic setting, we here generalize the inference of relative abundances to many locations. Let us 
assume that the abundances Nl = N0e

�l are scaled by location-specific factors �l ∼ N(0, �2
�
) that are themselves normally 

distributed with mean zero and variance �2
�
 . Similarly, we assume that the detection probabilities pj = logistic(�0 + �j) are 

scaled by observer-specific effects �j ∼ N
(
0, �2

�

)
 that are also normally distributed with mean zero and variance �2

�
 . Here, the 

logistic transformation ensures 0 ≤ pj ≤ 1 . We further enforce the conditions 1
L

∑
i�l = 0 and 1

J

∑
j�j = 0 by scaling N0 and p0 

accordingly. If observers do not visit multiple locations, the �j need to be modelled using informative covariates.
We conducted simulations with N0 = 100 , �2

�
= 0.2 , �0 = −1 and �2

�
= 0.5 , corresponding to an average detection probability 

p0 = logistic
(
�0
)
= 0.27 . As shown in Figs. 5C and 5D, neither N0 nor p0 can be inferred accurately, regardless of whether 

L = 20 or L = 100 locations were surveyed by J = 20 or J = 100 observers visiting m = 5 differentlocations each, cor-
responding to V = 100 and V = 500 visits, respectively. In contrast, the relative abundances are estimated well, and easily 
distinguish locations with high from those with low abundances (Figs. 5E and 5F).

Fig. 5  Inferring relative abundances under the models pre-
sented in Box 3. A–B: Posterior estimates of abundances from 
data simulated for five visits per location with N1 = 100 and 
N2 = 200 and detection probability p = 0.2 (dashed vertical 
lines). B: Posterior distribution of the relative abundance of 
N2∕N1 from the data of A. C–F: Posterior distributions on N0 

(C), p0 (D) and the relative abundances �l (E and F, mean and 
90% quantile, true values as orange dots) for each location l 
under the multi-location relative abundance model outlined 
in Box  3 and from data simulated with N0 = 100 , �2

�
= 0.2 , 

p0 = −1 and �2
�
= 0.5 and either L = J = 20 (black, E) or 

L = J = 100 (blue, F)
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cases where alien species population control is being 
performed in tandem with skilled community science 
participants (e.g., hunters); for instance, Davis et  al. 
(2016) used removal models to estimate population 
density of the invasive pig (Sus scrofa) using aerial 
gunning data.

Trend: Of interest may be both trends in the dis-
tribution and trends in the abundance of an alien spe-
cies. Common to both is that changes in the effective 
search effort between surveys must be accounted for: 
If a community science project is, for instance, suc-
cessful in acquiring new participants, or if the par-
ticipants gained additional experience in detecting the 
target species, an increase in the number of reported 
detections may not necessarily reflect an increase in 
the abundance of that species. A statistical approach 
to infer population trends must thus account for tem-
poral variation in the effective search effort, either by 
modelling it explicitly or through informative covari-
ates such as the number of active volunteer recorders 
or their rate in reporting more common species whose 
abundance is assumed not to change through time.

For repeated survey data resulting in reported 
detections and non-detections, occupancy models 
can be extended to trends in distributions explicitly 
with two additional parameters: the rate at which an 
alien species colonised previously non-occupied loca-
tions, and the rate at which it goes extinct at previ-
ously occupied locations (MacKenzie et  al. 2003). 
Similarly, Royle-Nichols models can be extended 
to detect trends in species abundances by explicitly 
modelling population growth (Dail and Madsen 2011; 
Hostetler and Chandler 2015). These so-called multi-
season models generally require similar experimen-
tal designs as their single-season analogues, but they 
differ in one key aspect: a design in which observ-
ers survey a single location is permissible, even if 
their level of training is not well reflected by covari-
ates. The reason is that while observers vary in their 
detection probabilities, information about a change 
in occupancy state is contained also in the data of a 
single observer visiting the same location repeatedly, 
allowing for error rates to be integrated out (Link and 
Sauer 1997).

This is also true for surveys in which volunteer 
recorders report direct or indirect estimates of abun-
dances: regardless of the detection probability of an 
observer, a change in abundance translates into a 
change in the expected reported abundances (with 

the exception of a detection probability of 0). Link 
and Sauer (1997) introduced such trend models for 
direct or indirect observations well characterised by 
Poisson processes (including the negative-binomial 
distribution for overdispersed data), for which Aebi-
scher et  al. (2020) recently introduced a Bayesian 
solution. Most count data are well characterised 
by Poisson processes, including surveys in which 
volunteer recorders report all detections without 
surveying specific locations. While such a design 
does not allow for easy estimation of error rates (see 
above), it may still result in an accurate inference 
of population trends, as we show in Box 3. A com-
mon drawback of existing methods to infer trends in 
abundance is their assumption of no false positives. 
While protocols involving expert or community-
based validation procedures may reduce false posi-
tives to a minimum (Schade et  al. 2019; Wiggins 
et  al. 2011), we identify the development of meth-
ods that explicitly account for false positives as an 
important area of future research.

Communicating uncertainty to participants and other 
stakeholders

Effective communication should be considered a 
central component of all community science pro-
jects (Garbarino and Mason 2016). It is necessary to 
achieve project objectives which will be different for 
the various actors involved (e.g., volunteer record-
ers, professional scientists, managers, policymakers 
and other stakeholders). In the context of alien spe-
cies research, clear communication is not only impor-
tant in the recruitment, engagement, motivation and 
retention of participants (Dickinson et  al. 2012), but 
can be instrumental for the success of any manage-
ment decisions (Falk et  al. 2016). Highlighting the 
extent to which the data collected are used may be 
relevant to strengthen the engagement of community 
members  in such projects. In a complementary way, 
there is an interest in communicating towards stake-
holders and decision-makers in particular, to make 
them understand how much added value there is in 
taking into account data from community science as 
an element of evidence. These two aspects can act in 
synergy and reinforce each other (Groom et al. 2019). 
Effective communication during the early stages (i.e., 
the recruitment of participants and data collection 
before it becomes routine) will require an explanation 
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of the aims and importance of the project. Participants 
should be made aware about what their contribution 
may lead to (e.g., eradication or management of a 
species, research to underpin management decisions, 
research on invasion dynamics or impacts of alien spe-
cies) given the potential for individual participants to 
oppose management methods and outcomes. Instruc-
tions for participants should be clearly explained 
to reduce the potential for miscommunication and 
improve data quality throughout the project. Impor-
tantly, by understanding the way in which messages 
can become misconstrued, we can minimise additional 
uncertainties that may emerge during communication.

Central to effective communication is establishing 
a reciprocal dialogue between project coordinators 
and participants, which should ideally be based on a 

two-way process (Shackleton et  al. 2019). Sustained 
engagement throughout the project, where partici-
pants are able to provide feedback and ask questions, 
enables project coordinators to refine their approach 
to identify issues, which need to be tackled to reach 
the intended educational, engagement and research 
outcomes (Druschke and Seltzer 2012). In recent 
years a number of best practice guidelines  for com-
munication have become available to project initiators 
(e.g., Veeckman et al. 2019).

Objective and efficient dissemination of research 
findings and the associated uncertainty (in a way that 
reduces the potential for the audience to misinterpret 
and potentially misuse information) should be a cen-
tral aim of community science initiatives. Commu-
nicating with participants by providing feedback and 

Box 3  Inferring trends in abundances

We consider a design in which volunteer recorders are reporting GPS locations of all detections. We further assume that some 
information proportional to the spent search effort exists, such as the time volunteer recorders spend looking for the alien 
species or the number of reports of a commonly detected species. Let us denote by dlj(t) the number of detections reported 
by observer j = 1,… , J during survey t  in a specific area l = 1,… ,L , for instance a specific cell of a geographic grid, and 
let slj(t) be a measure proportional to the search effort spent by observer j in that area. Under such a design, nlj is likely well 
characterized by a Poisson distribution nlj ∼ Pois(�lj(t)slj) with unknown rates �lj(t) . Note that these rates are affected by the 
abundance at location i as well as the detection probability of observer j at that location, itself a potentially complex function 
of the training of the observer as well as characteristics of the location (e.g., vegetation).

Assuming that the detection probabilities are constant across surveys ( �lj
(
t1
)
= �lj(t2) ), a change in the rates is reflective of 

a change in abundances. The interest therefore lies in inferring changes in the rates, which are independent of location or 
observer-specific characteristics. For a case of two surveys at t1, t2 , we thus have �lj(t2) = ��lj(t1) and wish to infer � from 
the data of all observers and all locations. Following Aebischer et al. (2020), conditioning on the number of observations 
nlj = dlj(1) + dlj(2) leads to the likelihood

P(d��,n) ∝ ∏L

l=1

∏J

j=1
plj(�)

dlj(t1)(1 − plj(�))
dlj(t2)

with d = (d11,… , d1J ,… dLJ) , n = (n11,… , n1J ,… , nLJ) and

plj(�) =
�lj(t1)slj(t1)

�lj(t1)slj(t1)+��lj(t1)slj(t2)
=

(
1 +

slj(t2)

slj(t1)
�

)−1

Importantly, this formulation gets rid of the nuisance parameters �ij(t) . Note further that no absolute estimates of search efforts 
are required: since only their ratio is relevant, any quantity proportional to the search effort will do. The posterior distribution 
of � is readily inferred under Jeffrey’s prior (Aebischer et al. 2020).

To illustrate this approach, we simulated data for observers that each surveyed a unique location during two consecutive 
surveys. As each location was surveyed by a single observer, detection probabilities and the abundances cannot be inferred 
individually without strong assumptions about their distribution (there are less data points than unknowns). However, a 
trend in abundance may still be identified. To show that, we simulated observers j = 1,… , J with detection probabilities 
pj ∼ Beta(0.01, 10) , their search efforts as sj(t) ∼ Exp(0.1) and the abundances at their location as Nj

(
t1
)
∼ Pois(10) . Data 

simulated this way resulted in reported abundances dj(t1) = 0 in > 99% of all surveys, representative for community science 
projects targeting rare alien species. We then identified the power to detect a decreasing trend with � = 0.5 , 0.9 or 0.95 for 
different numbers of observers (and corresponding locations). As shown in Fig. 6, trends are reliably identified if sufficient 
observers participate, with stronger declines generally easier to identify. Obviously, higher detection probabilities, higher 
abundances or larger search efforts would all result in higher reported abundances and render trend identification easier. In 
case the assumption of constant detection rates it not possible, covariates accounting for variation can be folded into slj(t) 
(Link & Saur 1997).
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presenting the research findings and their implications 
is an important obligation of project coordinators 
working within the community science framework 
(Vries et  al. 2019). As project results, particularly 
regarding alien species, may be relevant to policy-
makers and managers (Groom et al. 2019; Lioy et al. 
2019), the approach used to communicate findings 
and their uncertainty may require adaptation based on 
the intended audience (e.g., project participants, sci-
entists, the general public or decision-makers).

Following a framework of uncertainty communica-
tion outlined in van der Bles et al. (2019), we identify 
the different components to consider when develop-
ing research and communication strategies in com-
munity science projects.

Who is communicating to whom?

A key element to acknowledge is how the relation-
ship between communicator(s) and the audience can 
influence how uncertainty is perceived. The audience 
may come from culturally diverse backgrounds, hold 
different values and motivating factors, and have a 
varying degree of numerical and scientific literacy 
skills (Ganzevoort et  al. 2017; Wright et  al. 2015). 
Thus, although there may not be a one-size-fits-all 
approach to the form in which uncertainty is com-
municated, consideration should be made as to who 

is communicating to whom and how may this affect 
intended project outcomes. For instance, the relation-
ship between the communicator(s) and the audience 
can be important from the perspective of whether the 
information being received and the person/organisa-
tion conveying it are considered trustworthy (van der 
Bles et  al. 2019). Trust of the audience in the com-
municator is of utmost importance as the lack of trust 
can lead to a defensive stance or rejection even if the 
messages are true (Tuler and Kasperson 2013). This 
highlights the importance of selecting communicators 
based on their reputation with the audience and their 
ability to effectively engage with participants. Some 
projects aimed at large-scale participation may war-
rant the use of professional science communicators, 
and/or public figures of endorsement, to be involved 
or consulted during the out-reach phases of projects 
to build rapport, encourage participation and contin-
ued involvement in the project. More targeted projects 
may benefit from involving individuals with greater 
relatability with participants during communication 
stages. For example, if an alien species has a much 
greater probability of establishing within agricultural 
landscapes, involving one or more local farmers to act 
alongside project coordinators in a communication 
role may facilitate improved project outcomes. This 
could be particularly important if implications of the 
research may lead to management actions that require 

Fig. 6  Power to identify 
trends in abundances. 
Shown are the mean 
posterior probabilities 
P(𝜙 < 1|d,n) given data 
d conditioned on the total 
counts n and reflecting the 
certainty that abundances 
declined across 1000 
replicate simulations for 
different trends � = 0.5 , 
0.9 or 0.95 as a function of 
the number of observers 
that each surveyed a single 
location with observer-
specific detection probabili-
ties and location-specific 
abundances as described in 
Box 4
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landowner support. Another option is to use project 
ambassadors i.e., participants of community science 
initiatives acting as role models for other participants 
and helping in promotion and community building 
(Druschke and Seltzer 2012).

What is being communicated?

Identifying exactly what we are uncertain about 
is necessary to then determine the way in which it 
should be communicated (van der Bles et  al. 2019). 
Here, it should be noted that both the information that 
we are uncertain about and how it is expressed can 
influence the effect of the communication to the audi-
ence. When the data have the potential to be used for 
a specific purpose in decision making processes, it is 
important to have a good understanding of the infor-
mation needs, how and to what extent the considera-
tion of uncertainty may influence the decision making 
and steer the decisions. This helps to identify what 
needs to be communicated.

For community science projects that address 
aspects of alien species, uncertainty will stem from 
whether the collected data adequately capture the 
information required to answer the specific research 
question(s). Effectively, identifying the types of 
uncertainty that need to be communicated can help 
to determine how best to do so. For instance, does 
the uncertainty arise because of sampling variation 
across space or time (i.e., the experimental design), or 
rather because there is a lack of knowledge around the 
biology and dynamics of a given species (i.e., there 
is a general knowledge gap)? Further, how large are 
these uncertainties and how does that affect our con-
fidence in the results? Different analytical techniques 
can be applied to derive measures of certainty around 
the data that are usually expressed through probabil-
ity distributions or qualitative statements and may be 
communicated through various forms of graphical 
visualisations such as error bars and confidence inter-
vals (Padilla et al. 2021). Identifying exactly what the 
source of uncertainty is will help to guide appropriate 
ways to communicate it and can affect how informa-
tion is perceived (see below). Communicating these 
identified uncertainties to participants/stakeholders 
in a clear and transparent manner is critical to cre-
ate and maintain trust in the results and the people 
who participated in the project. Importantly, poten-
tial conflicts of interest should be explicitly stated as 

participants may be sceptical of findings if they per-
ceive a biased agenda.

To what effect?

The effect to which uncertainty is communicated 
will vary among the audience. This is due to the 
strongly subjective nature of interpreting informa-
tion, based on not only what the message is but also 
in the medium or format in which it is conveyed (van 
der Bles et al. 2019). For instance, the various ways 
that uncertainty is visualised (e.g., error bars around 
a mean, boxplots etc.) are not consistently under-
stood among people (Padilla et  al. 2021). This can 
be shaped by the elements we previously mentioned; 
however, as subjective judgement arises due to the 
interpretation of information, we may reduce this 
form of uncertainty to some degree if messages are 
conveyed in a clear and understandable way. Again, 
having a good understanding of the knowledge needs 
and potential purpose of the data allows project man-
agers you to properly shape the communication and 
thus maximise its effects.

When communicating project findings, care must 
be taken to not present information in a mislead-
ing way, for example, with unfounded certainty (by 
downplaying the uncertainty) that may undermine 
project outcomes in the long term (e.g., engage-
ment and empowerment of community members) 
and produce public distrust. Given that community 
science projects on alien species may have manage-
ment implications, which can be highly contentious 
(Crowley et  al. 2019; Friedel et  al. 2011; Zengeya 
et  al. 2017), presenting an objective interpretation 
of research findings will produce the most benefi-
cial outcomes for the project, but also ultimately for 
public trust in science in general. If the research find-
ings lead to recommendations, it is also important to 
communicate the level of uncertainty that is relevant 
for the decision (Fischhoff and Davis 2014), e.g., if 
uncertainty around a measurement of alien species 
abundance does not affect the recommendation for its 
management. Although policies and practices related 
to the management of alien species are intrinsically 
value-driven and will therefore strongly influence 
how messages transmitted are received (Reaser 2001), 
communicating transparently will establish and main-
tain trust to the benefit of community science in gen-
eral. In dealing with uncertainty, communicators also 
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grapple with the issue of credibility. Acknowledging 
uncertainty and explicitly communicating uncertainty 
will increase the perceived trustworthiness of the data 
(Lundgren and McMakin 2018).

Conclusions

We recognise that community science plays a grow-
ing role in the understanding, and ultimately in the 
prevention and management, of future biological 
invasions and in the ongoing monitoring of already 
established alien species (Baker et  al. 2019; Dick-
inson et  al. 2012; Eritja et  al. 2019). Community 
science projects provide opportunities to capture 
information that would otherwise be difficult to 
record, usually due to high costs and efforts associ-
ated with data collection (Brown et al. 2018). They 
mutually benefit science and society, expanding sci-
entific knowledge and improving science literacy 
among the general public (Dickinson et  al. 2012). 
However, data generated from community science 
projects may be associated with varying degrees 
of uncertainties (Crall et  al. 2011; Gardiner et  al. 
2012; Jiménez et  al. 2019; Tye et  al. 2017). Com-
munity science approaches may be more effective 
in capturing some uncertainties in natural systems, 
due to their scale, but may introduce additional 

measurement error or bias uncertainties due to 
inconsistent or less skilled observers. Appropriate 
project design should aim to make the most of the 
opportunities community science offers and mini-
mise sources of added variability. Neglecting to 
address these uncertainties, particularly when com-
municating with participants, stakeholders, manag-
ers, and policy- and decision-makers can decrease 
overall confidence in the results, leading to inappro-
priate management decisions and public scepticism 
(van der Bles et al. 2019; Vanderhoeven et al. 2017). 
Effective uncertainty communication (Box  4) cre-
ates a more informed public, empowers community 
members in the decision-making process and leads 
to better uptake of management decisions (Vander-
hoeven et al. 2017).
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Box 4  Key messages for effective uncertainty communication

Uncertainty is an inherent part of the scientific process and will persist to some degree regardless of the approach. The under-
standing and extent of uncertainty, particularly in relation to our confidence in the results, is critical to open and transparent 
communication of scientific findings

Set up your aims: Establish and communicate a clear objective and indicators of success.
Know your audience: Define the target audiences, understand their values and motivations, identify their needs and potential 

agenda, and understand how uncertainty may steer the decision-making process and the decisions. Adapt your message and 
communication approach accordingly.

Avoid jargon: Keep the usage of jargon to a minimum and explain scientific terms clearly.
Train participants: Ensure participants have adequate instructions and understanding so providing benefits through democrati-

sation of science by increasing scientific literacy while also reducing errors and uncertainty.
Develop a reciprocal dialogue: Communication should occur between project coordinators and volunteer recorders. Channels 

for easy communication should be set up and encouraged by project organisers.
Ask for feedback: Actively seek discussion and feedback throughout the communication effort. This will help determine where 

potential misunderstandings may be arising.
Acknowledge uncertainty and communicate about it explicitly: Discuss the sources of uncertainty, explain why it exists, 

describe what, if anything, can be done to manage it better. Explain the level of uncertainty that is relevant for decision-
making.

Build trust with your audience: Be honest, transparent and unbiased in communicating with your audience. Trust between 
communicator and audience is essential for effective communication.

Share your stories: We can improve our application of community science to biodiversity studies by highlighting the successes 
and, importantly, failures of projects while also sharing the excitement of the collaborative outcomes.
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