10 research outputs found

    The one dimensional Kondo lattice model at partial band filling

    Full text link
    The Kondo lattice model introduced in 1977 describes a lattice of localized magnetic moments interacting with a sea of conduction electrons. It is one of the most important canonical models in the study of a class of rare earth compounds, called heavy fermion systems, and as such has been studied intensively by a wide variety of techniques for more than a quarter of a century. This review focuses on the one dimensional case at partial band filling, in which the number of conduction electrons is less than the number of localized moments. The theoretical understanding, based on the bosonized solution, of the conventional Kondo lattice model is presented in great detail. This review divides naturally into two parts, the first relating to the description of the formalism, and the second to its application. After an all-inclusive description of the bosonization technique, the bosonized form of the Kondo lattice hamiltonian is constructed in detail. Next the double-exchange ordering, Kondo singlet formation, the RKKY interaction and spin polaron formation are described comprehensively. An in-depth analysis of the phase diagram follows, with special emphasis on the destruction of the ferromagnetic phase by spin-flip disorder scattering, and of recent numerical results. The results are shown to hold for both antiferromagnetic and ferromagnetic Kondo lattice. The general exposition is pedagogic in tone.Comment: Review, 258 pages, 19 figure

    Traveling waves and pattern formation for spatially discrete bistable reaction-diffusion equations (survey)

    Get PDF
    Analysis and Stochastic

    Discrete dynamics for convex and non-convex smoothing functionals in PDE based image restoration

    No full text
    In this article we consider a model that generalizes the Perona-Malik and the total variation models. We consider discretizations of this new model and show that the discretizations conserve certain properties of the continuous model, in particular convergence of the iterative scheme to a critical point and existence of a discrete Liapunov functional. Computational results are obtained that illustrate different features of the family of models
    corecore