48 research outputs found
On the complexity of the Saccharomyces bayanus taxon: hybridization and potential hybrid speciation
Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum), which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequence data, and based on the S. bayanus var. bayanus reference strain NBRC 1948, a hypothetical pure S. bayanus was reconstructed for these genes that showed alleles with similarity values lower than 97% with the S. bayanus var. uvarum strain CBS 7001, and of 99¿100% with the non S. cerevisiae portion in S. pastorianus Weihenstephan 34/70 and with the new species S. eubayanus. Among the S. bayanus strains under study, different levels of homozygosity, hybridization and introgression were found; however, no pure S. bayanus var. bayanus strain was identified. These S. bayanus hybrids can be classified into two types: homozygous (type I) and heterozygous hybrids (type II), indicating that they have been originated by different hybridization processes. Therefore, a putative evolutionary scenario involving two different hybridization events between a S. bayanus var. uvarum and unknown European S. eubayanus-like strains can be postulated to explain the genomic diversity observed in our S. bayanus var. bayanus strains
Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming
Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors
Is drinking water a risk factor for endemic cryptosporidiosis? A case-control study in the immunocompetent general population of the San Francisco Bay Area
BACKGROUND: Cryptosporidiosis, caused by Cryptosporidium, is an enteric illness that has received much attention as an infection of immunocompromised persons as well as in community outbreaks (frequently waterborne). There are, however, no studies of the risk factors for sporadic community-acquired cryptosporidiosis in the immunocompetent US population. We undertook a case-control study in the San Francisco Bay Area as part of a national study sponsored by the Centers for Disease Control and Prevention to ascertain the major routes of transmission for endemic cryptosporidiosis, with an emphasis on evaluating risk from drinking water. METHODS: Cases were recruited from a population-based, active surveillance system and age-matched controls were recruited using sequential random-digit dialing. Cases (n = 26) and controls (n = 62) were interviewed by telephone using a standardized questionnaire that included information about the following exposures: drinking water, recreational water, food items, travel, animal contact, and person-to-person fecal contact, and (for adults) sexual practices. RESULTS: In multivariate conditional logistic regression analyses no significant association with drinking water was detected. The major risk factor for cryptosporidiosis in the San Francisco Bay Area was travel to another country (matched odds ratio [95% confidence interval]: 24.1 [2.6, 220]). CONCLUSION: The results of this study do not support the hypothesis that drinking water is an independent risk factor for cryptosporidiosis among the immunocompetent population. These findings should be used to design larger studies of endemic cryptosporidiosis to elucidate the precise mechanisms of transmission, whether waterborne or other
Insertion of Horizontally Transferred Genes within Conserved Syntenic Regions of Yeast Genomes
Horizontal gene transfer has been occasionally mentioned in eukaryotic genomes, but such events appear much less numerous than in prokaryotes, where they play important functional and evolutionary roles. In yeasts, few independent cases have been described, some of which corresponding to major metabolic functions, but no systematic screening of horizontally transferred genes has been attempted so far. Taking advantage of the synteny conservation among five newly sequenced and annotated genomes of Saccharomycetaceae, we carried out a systematic search for HGT candidates amidst genes present in only one species within conserved synteny blocks. Out of 255 species-specific genes, we discovered 11 candidates for HGT, based on their similarity with bacterial proteins and on reconstructed phylogenies. This corresponds to a minimum of six transfer events because some horizontally acquired genes appear to rapidly duplicate in yeast genomes (e.g. YwqG genes in Kluyveromyces thermotolerans and serine recombinase genes of the IS607 family in Saccharomyces kluyveri). We show that the resulting copies are submitted to a strong functional selective pressure. The mechanisms of DNA transfer and integration are discussed, in relation with the generally small size of HGT candidates. Our results on a limited set of species expand by 50% the number of previously published HGT cases in hemiascomycetous yeasts, suggesting that this type of event is more frequent than usually thought. Our restrictive method does not exclude the possibility that additional HGT events exist. Actually, ancestral events common to several yeast species must have been overlooked, and the absence of homologs in present databases leaves open the question of the origin of the 244 remaining species-specific genes inserted within conserved synteny blocks
Molecular evolution of cyclin proteins in animals and fungi
<p>Abstract</p> <p>Background</p> <p>The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi.</p> <p>Results</p> <p>We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution.</p> <p>Conclusions</p> <p>The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events.</p
Trait Variation in Yeast Is Defined by Population History
A fundamental goal in biology is to achieve a mechanistic understanding of how and to what extent ecological variation imposes selection for distinct traits and favors the fixation of specific genetic variants. Key to such an understanding is the detailed mapping of the natural genomic and phenomic space and a bridging of the gap that separates these worlds. Here we chart a high-resolution map of natural trait variation in one of the most important genetic model organisms, the budding yeast Saccharomyces cerevisiae, and its closest wild relatives and trace the genetic basis and timing of major phenotype changing events in its recent history. We show that natural trait variation in S. cerevisiae exceeds that of its relatives, despite limited genetic variation, and follows the population history rather than the source environment. In particular, the West African population is phenotypically unique, with an extreme abundance of low-performance alleles, notably a premature translational termination signal in GAL3 that cause inability to utilize galactose. Our observations suggest that many S. cerevisiae traits may be the consequence of genetic drift rather than selection, in line with the assumption that natural yeast lineages are remnants of recent population bottlenecks. Disconcertingly, the universal type strain S288C was found to be highly atypical, highlighting the danger of extrapolating gene-trait connections obtained in mosaic, lab-domesticated lineages to the species as a whole. Overall, this study represents a step towards an in-depth understanding of the causal relationship between co-variation in ecology, selection pressure, natural traits, molecular mechanism, and alleles in a key model organism