184 research outputs found

    Mapping quantitative trait Loci associated with graft (In)compatibility in apricot (Prunus armeniaca L.)

    Get PDF
    Graft incompatibility (GI) between the most popular Prunus rootstocks and apricot cultivars is one of the major problems for rootstock usage and improvement. Failure in producing long-leaving healthy grafts greatly affects the range of available Prunus rootstocks for apricot cultivation. Despite recent advances related to the molecular mechanisms of a graft-union formation between rootstock and scion, information on genetic control of this trait in woody plants is essentially missing because of a lack of hybrid crosses, segregating for the trait. In this study, we have employed the next-generation sequencing technology to generate the single-nucleotide polymorphism (SNP) markers and construct parental linkage maps for an apricot F1 population “Moniqui (Mo)” × “Paviot (Pa)” segregating for ability to form successful grafts with universal Prunus rootstock “Marianna 2624”. To localize genomic regions associated with this trait, we genotyped 138 individuals from the “Mo × Pa” cross and constructed medium-saturated genetic maps. The female “Mo” and male “Pa” maps were composed of 557 and 501 SNPs and organized in eight linkage groups that covered 780.2 and 690.4 cM of genetic distance, respectively. Parental maps were aligned to the Prunus persica v2.0 genome and revealed a high colinearity with the Prunus reference map. Two-year phenotypic data for characters associated with unsuccessful grafting such as necrotic line (NL), bark and wood discontinuities (BD and WD), and an overall estimate of graft (in)compatibility (GI) were collected for mapping quantitative trait loci (QTLs) on both parental maps. On the map of the graft-compatible parent “Pa”, two genomic regions on LG5 (44.9–60.8 cM) and LG8 (33.2–39.2 cM) were associated with graft (in)compatibility characters at different significance level, depending on phenotypic dataset. Of these, the LG8 QTL interval was most consistent between the years and supported by two significant and two putative QTLs. To our best knowledge, this is the first report on QTLs for graft (in)compatibility in woody plants. Results of this work will provide a valuable genomic resource for apricot breeding programs and facilitate future efforts focused on candidate genes discovery for graft (in)compatibility in apricot and other Prunus species

    Exactly-solvable models of proton and neutron interacting bosons

    Get PDF
    We describe a class of exactly-solvable models of interacting bosons based on the algebra SO(3,2). Each copy of the algebra represents a system of neutron and proton bosons in a given bosonic level interacting via a pairing interaction. The model that includes s and d bosons is a specific realization of the IBM2, restricted to the transition regime between vibrational and gamma-soft nuclei. By including additional copies of the algebra, we can generate proton-neutron boson models involving other boson degrees of freedom, while still maintaining exact solvability. In each of these models, we can study not only the states of maximal symmetry, but also those of mixed symmetry, albeit still in the vibrational to gamma-soft transition regime. Furthermore, in each of these models we can study some features of F-spin symmetry breaking. We report systematic calculations as a function of the pairing strength for models based on s, d, and g bosons and on s, d, and f bosons. The formalism of exactly-solvable models based on the SO(3,2) algebra is not limited to systems of proton and neutron bosons, however, but can also be applied to other scenarios that involve two species of interacting bosons.Comment: 8 pages, 3 figures. Submitted to Phys.Rev.

    Ab initio treatment of ion-water molecule collisions with a three-center pseudo potential

    Full text link
    We calculate electron capture cross sections in collisions of protons with water molecules, using two simple ab initio approaches. The formalism involves the calculation of one-electron scattering wave functions and the use of three-center pseudo potential to represent the electron H2O+ interaction. Several methods to obtain many-electron cross sections are considere

    Positive and negative feedbacks and free-scale pattern distribution in rural-population dynamics

    Get PDF
    Depopulation of rural areas is a widespread phenomenon that has occurred in most industrialized countries, and has contributed significantly to a reduction in the productivity of agro-ecological resources. In this study, we identified the main trends in the dynamics of rural populations in the Central Pyrenees in the 20th C and early 21st C, and used density independent and density dependent models and identified the main factors that have influenced the dynamics. In addition, we investigated the change in the power law distribution of population size in those periods. Populations exhibited density-dependent positive feedback between 1960 and 2010, and a long-term positive correlation between agricultural activity and population size, which has resulted in a free-scale population distribution that has been disrupted by the collapse of the traditional agricultural society and by emigration to the industrialized cities. We concluded that complex socio-ecological systems that have strong feedback mechanisms can contribute to disruptive population collapses, which can be identified by changes in the pattern of population distribution

    Exact Solution of the Isovector Proton Neutron Pairing Hamiltonian

    Get PDF
    The complete exact solution of the T=1 neutron-proton pairing Hamiltonian is presented in the context of the SO(5) Richardson-Gaudin model with non-degenerate single-particle levels and including isospin-symmetry breaking terms. The power of the method is illustrated with a numerical calculation for 64^{64}Ge for a pf+g9/2pf+g_{9/2} model space which is out of reach of modern shell-model codes.Comment: To be published by Physical Review Letter

    The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid Badlands area (Central Spanish Pyrenees)

    Get PDF
    Erosion and deposition processes in badland areas are usually estimated using traditional observations of topographic changes, measured by erosion pins or profile metres (invasive techniques). In recent times, remote-sensing techniques (non-invasive) have been routinely applied in geomorphology studies, especially in erosion studies. These techniques provide the opportunity to build high-resolution topographic models at centimetre accuracy. By comparing different 3-D point clouds of the same area, obtained at different time intervals, the variations in the terrain and temporal dynamics can be analysed. The aim of this study is to assess and compare the functioning of terrestrial laser scanner (TLS, RIEGL LPM-321) and structure-from-motion photogrammetry (SfM) techniques (Camera FUJIFILM, Finepix x100 and software PhotoScan by AgiSoft) to evaluate erosion and deposition processes in two opposite slopes in a humid badlands area in the central Spanish Pyrenees. Results showed that TLS data sets and SfM photogrammetry techniques provide new opportunities in geomorphological erosion studies. The data we recorded over 1 year demonstrated that north-facing slopes experienced more intense and faster changing geomorphological dynamics than south-facing slopes as well as the highest erosion rates. Different seasonal processes were observed, with the highest topographic differences observed during winter periods and the high-intensity rainfalls in summer. While TLS provided the highest accuracy models, SfM photogrammetry was still a faster methodology in the field and precise at short distances. Both techniques present advantages and disadvantages, and do not require direct contact with the soil and thus prevent the usual surface disturbance of traditional and invasive methods

    Ab initio treatment of charge transfer in ion-molecule collisions based on one-electron wave functions

    Full text link
    Two simple ab initio methods based on one-electron wave functions are employed to calculate the singleelectron capture and single ionization of H2O and CO molecules by ion impact. The anisotropy of the molecular targets is taken into account by using multicenter pseudopotentials to represent the interaction of the active electron with the ionic molecular core. These two methods are applied to the study of three collisional systems: H+ + H2O, He2+ + H2O, and C2+ + CO. Comparison with experiments and other theoretical works is presented when availableThis work has been supported by DGICYT Project No. ENE2007-62934/FTN and by AIHH-HH2006-006-ESP- 40/200

    Woody encroachment and soil carbon stocks in subalpine areas in the Central Spanish Pyrenees

    Get PDF
    Woody encroachment has been an ongoing process in the subalpine belt of Mediterranean mountains, after land abandonment, the disappearance of the transhumant system and the decrease of the livestock number. The main objectives of this study were: (i) to identify land use/land cover (LULC) changes from 1956 to 2015, and (ii) to investigate the effects of LULC changes in physical and chemical soil properties and soil organic carbon (SOC) and nitrogen (N) stocks. It is hypothesized that woody encroachment in the subalpine belt may lead to significant changes in soil properties, and will generate an increase in the SOC stocks. A land use gradient was identified in the subalpine belt of the Central Spanish Pyrenees: (i) subalpine grasslands, (ii) shrublands, (iii) young forests, and (iv) old forests. Mineral soil samples were collected every 10 cm, down to 40 cm, at three points per each LULC and a total of 48 samples were analyzed. The results showed that (i) woody encroachment has occurred from 1956 to 2015 due to the expansion of coniferous forests and shrublands (at the expense of grasslands), (ii) land cover and soil depth had significant effects on soil properties (except for pH), being larger in the uppermost 0–10 cm depth, (iii) SOC and N contents and stocks were higher in the grassland sites, and (iv) the woody encroachment process initially produced a decrease in the SOC stocks (shrublands), but no differences were observed considering the complete soil profile between grasslands and young and old forests. Further studies, describing SOC stabilization and quantifying above-ground carbon (shrub and tree biomass) are required

    Properties and removal of singular couplings at conical intersections

    Get PDF
    9 págs.; 7 figs.; PACS number~s!: 34.50.2s, 34.70.1e, 34.10.1xA detailed analysis of the characteristics of non-adiabatic couplings near CIs that appear in the application of the SEIKON method to ion-diatomic molecule processes was conducted. The physical origin of the couplings due to CIs appearing for collinear geometries of the nuclear frame was shown. ©2001 American Physical SocietyThis work was partially supported by DGICYT Project No. PB96-0056.Peer Reviewe

    SU(3) Richardson-Gaudin models: three level systems

    Full text link
    We present the exact solution of the Richardson-Gaudin models associated with the SU(3) Lie algebra. The derivation is based on a Gaudin algebra valid for any simple Lie algebra in the rational, trigonometric and hyperbolic cases. For the rational case additional cubic integrals of motion are obtained, whose number is added to that of the quadratic ones to match, as required from the integrability condition, the number of quantum degrees of freedom of the model. We discuss different SU(3) physical representations and elucidate the meaning of the parameters entering in the formalism. By considering a bosonic mapping limit of one of the SU(3) copies, we derive new integrable models for three level systems interacting with two bosons. These models include a generalized Tavis-Cummings model for three level atoms interacting with two modes of the quantized electric field.Comment: Revised version. To appear in Jour. Phys. A: Math. and Theo
    • …
    corecore