
PRL 96, 072503 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 FEBRUARY 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC
Exact Solution of the Isovector Neutron-Proton Pairing Hamiltonian

J. Dukelsky,1 V. G. Gueorguiev,2,3 P. Van Isacker,4 S. Dimitrova,3 B. Errea,1 and S. Lerma H.1
1Instituto de Estructura de la Materia, CSIC. Serrano 123, 28006 Madrid, Spain

2Lawrence Livermore National Laboratory, Livermore, California, USA
3Institute of Nuclear Research and Nuclear Energy, BAS, Sofia 1784, Bulgaria
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The complete exact solution of the T � 1 neutron-proton pairing Hamiltonian is presented in the
context of the SO(5) Richardson-Gaudin model with nondegenerate single-particle levels and including
isospin symmetry-breaking terms. The power of the method is illustrated with a numerical calculation for
64Ge for a pf� g9=2 model space which is out of reach of modern shell-model codes.
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Exactly solvable models (ESM) provide important in-
sights into the structure of many-body quantum systems.
The two main advantages of ESMs are: (1) they can
describe in an analytical or exact numerical way a wide
variety of elementary phenomena. (2) They can be and
have been used as a testing ground for various many-body
approaches.

A particular class of ESMs, extensively used in nuclear
physics, are the dynamical-symmetry models. In this case
the Hamiltonian can be expressed in terms of Casimir
operators of a chain of nested algebras. An example often
used to introduce nuclear superconductivity [see, e.g.,
Ref. [1] ] is the rank-1 (Lie) algebra SU(2). Examples of
dynamical-symmetry models associated with a rank-2 al-
gebra are Elliott’s SU(3) model of nuclear deformation [2]
and the SO(5) model of T � 1 isovector pairing between
neutrons and protons [3] which has found many applica-
tions in nuclei [see, e.g., Ref. [4] ].

The concept of quantum integrability, closely linked
with exact solvability, goes beyond the limits of the
dynamical-symmetry approach. A quantum system is inte-
grable if there exist as many commuting Hermitian opera-
tors (integrals of motion) as quantum degrees of freedom
[5]. The set of Casimir operators of a chain of nested
algebras satisfies this condition.

Dynamical-symmetry models are usually defined for
degenerate single-particle levels. Lifting this degeneracy
breaks the dynamical symmetry but may still preserve
integrability. The pairing model with nondegenerate
single-particle levels, of which an exact solution was found
by Richardson in the 1960s [6], represents an example of
an ESM with such characteristics. Recently, more general
exactly solvable pairing models, both for fermions and for
bosons, called Richardson-Gaudin (RG) models, have been
proposed [7,8].

The RG pairing models are based on rank-1 algebras:
SU(2) for fermions and SU(1,1) for bosons. In this Letter
we carry out the first step in extending the RG models to
higher-rank algebras by considering a RG model based on
the rank-2 algebra SO(5). The model Hamiltonian de-
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scribes a two-component system consisting of neutrons
and protons interacting through an isovector (T � 1) pair-
ing force and distributed over nondegenerate orbits. This
neutron-proton (np) pairing Hamiltonian with nondegen-
erate orbits has been studied by Richardson [9] who pro-
posed an exact solution. However, it was shown subse-
quently that Richardson’s solution is incorrect for more
than two nucleon pairs [10] by explicitly solving the case
of three-nucleon pairs. Independently, Links et al. derived
an exact solution for the isospin invariant SO(5) model by
making use of the quantum inverse scattering method [11].

We present here the most general exact solution of the
RG SO(5) model including isospin symmetry-breaking
terms and for states with arbitray seniority. In addition to
the construction of the complete set of integrals of motion
from which more general exactly solvable np-pairing
Hamiltonians can be derived, we present here the first
numerical exact solution of the SO(5) RG model for
64Ge in a Hilbert space built from the pf� g9=2 shells,
of which the dimension goes well beyond the limits of
modern shell-model codes based on exact diagonalization.

SO(5) has also been proposed as the symmetry under-
lying high-Tc superconductivity [12]. The exactly solvable
RG model discussed in this Letter may conceivably be
used to generalize SO(5) condensed-matter models [13]
by the explicit addition of nondegenerate single-particle
symmetry-breaking terms. Other possible applications
might be found in polarized ultracold Fermi gases with
p-wave pairing interactions [14].

We begin by introducing the 10 generators of the SO(5)
algebra in a representation well suited for nuclear physics
problems. Let us define first the three T � 1 pair-creation
operators: b̂y�1;i � n̂yi n̂

y
�i , b̂y0;i � �n̂

y
i p̂
y
�i � p̂

y
i n̂
y
�i �=

���
2
p

, and
b̂y�1;i � p̂yi p̂

y
�i , where n and p refer to neutrons and pro-

tons, respectively, and i labels a single-particle basis (with �i
its time-reversed state) which may be associated with the
spherical shell-model basis i � jm or with an axially
symmetric deformed basis i � �m. The three pair-
annihilation operators are b̂�1;i, b̂0;i, and b̂�1;i. The three
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] close the SUT�2� subalge-
bra of SO(5). These 9 operators together with the number
operator N̂i � p̂yi p̂i � p̂

y
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y
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SO(5) algebra.
For a system with L single-particle states i � 1; . . . ; L

there are L integrals of motion:
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where Ĥi � N̂i=2� 1. The expression (1) follows from
the integrals of motion valid for any semisimple algebra of
arbitrary rank [15]. Since SO(5) is of rank 2, its Cartan
subalgebra contains two elements in the chosen basis,
namely Ĥi and T̂0;i, which appear linearly in (1). The set
of L parameters zi together with the two constants g and �
can be freely chosen and it is straightforward to check that
the integrability condition 	R̂i; R̂j
 � 0 is valid for any
choice of the L� 2 parameters. A simplified version of
(1) was previously derived using the algebraic Bethe ansatz
[11].

The eigenvalues of the integrals of motion are
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where e� and !� are solutions of the equations
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The meaning of the quantum numbers appearing in (2) and
(3) is as follows: vi is the seniority of each i level, i.e., the
number of fermions not paired in time-reversed states with
isospin T � 1, ti is the isospin of the unpaired fermions
[this quantum number is often called reduced isospin [16]],
t �

P
iti, M is the number of T � 1 time-reversed pairs,

and T0 is the z component of the total isospin, i.e., the
eigenvalue of the operator T̂0 �

P
iT̂0;i. The total number

of nucleons is N � Np � Nn � 2M�
P
ivi, whereas their

difference is Np � Nn � 2T0. The quantum numbers M,
T0, vi, and ti are conserved; T is also conserved if � � 0.

Although any function of the R̂i can be used as an
integrable Hamiltonian, the linear combination

PL
i�1 ziR̂i
07250
yields simple expressions for the np-pairing Hamiltonian
and its corresponding eigenvalues:
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where Ĉ is a constant operator depending on the conserved
quantities. We have introduced the variables "j � zj=2 and
specialized to a spherical basis i � jm. The second term on
the right-hand side of (1) breaks the isospin symmetry. For
� � 0 the operator T̂2 does not commute with the
Hamiltonian (4) and, consequently, T is not a good quan-
tum number but T0 is still a conserved quantity. The same
linear combination of the ri and the use of the Richardson
equations (3) yield the eigenvalues of (4):
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Each solution of the Eq. (3) gives an eigenstate of the
np-pairing Hamiltonian. The spectral parameters e� are
interpreted as pair energies as in the case of SU(2) pairing.
However, due to the larger rank of SO(5), a new set of
spectral parameters !� appears in the Eq. (3). These new
parameters are associated with the SUT�2� isospin subal-
gebra and there areM� T0 � t of them. In the limit � � 0
the number of finite !� parameters reduces to M� t� T
for each possible isospin T. The Bethe ansatz for the SO(5)
eigenstates of the RG model is a product wave function
[17]:"YM
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where the spectral dependence of the operators is
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and Î�;� is a raising operator for b̂y��e��: b̂
y
��e��Î�;� �

b̂y��1�e�� for � � �1; 0; b̂y�1�e��Î�;� � 0, and j�i is a

lowest-weight state defined by b̂�;ij�i � T̂�;ij�i � 0.
To show the behavior of the spectral parameters e� and
!� as a function of the isospin-breaking term �, we plot in
Fig. 1 some selected solutions of the Richardson equations
(3) for a system of two neutrons and two protons in two
shells (j0 � 1=2 and j1 � 3=2) within the seniority-0 sub-
space (M � 2; T0 � 0; ti � vi � 0).

For � � 0 there are two finite !� complex conjugate
parameters for T � 0 while the two pair energies are real
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and negative, for T � 1 there is one real, finite !� and two
real pair energies e�, and, finally, the T � 2 case reduces to
SU(2) for like particles with two e� parameters forming a
complex conjugate pair. For finite � there is isospin mixing
and the number of finite parameters !� is always two.
Figure 1 thus confirms that the number of finite!� spectral
parameters reduces from M � 2 to M� T when �! 0.
For T � 1 one of the real !� goes to �1 in this limit,
vanishing from the Richardson equations (3) but giving a
finite contribution to the Hamiltonian eigenvalues (4) [18].
Analogously, in the T � 2 case the two ! parameters tend
to1 in the � � 0 limit. Also shown are the energies of the
three eigenstates of the np-pairing Hamiltonian (4). We
emphasize that, while these are the eigenvalues of a par-
ticular Hamiltonian, the spectral parameters completely
define the eigenfunction (6) of the L integrals of motion
(1) from which Ĥ is constructed and their corresponding
eigenvalues (2).

We now turn to the discussion of a numerical calculation
for 64Ge. We consider a model space that is well beyond
modern shell-model capabilities based on exact diagonal-
ization: 12 valence neutrons and 12 valence protons with a
40Ca core. The adopted single-particle energies are (in
MeV) "f7=2

� 0:00, "p3=2
� 6:00, "f5=2

� 6:25, "p1=2
�

7:1, and "g9=2
� 9:60, and two pairing strengths, g �
FIG. 1. Pair energies e� (dashed lines) and spectral parameters
!� (solid lines) as a function of the parameter � for three
different states of a 2n-2p system with two shells (j0 � 1=2
and j1 � 3=2) in the seniority-0 subspace. The label T refers to
the isospin in the limit � � 0. The figure shows the lowest-
energy states of the Hamiltonian (4) for each T with energies
plotted in the bottom-right panel. Since the spectral parameters
of the T � 1 state are real, their imaginary part is not shown. The
interaction strength and single-particle energies are g � �1,
"0 � 0, and "1 � 1.
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�0:05 (weak) and �0:5 (strong), are considered. We as-
sume isospin symmetry (� � 0) and consider the
seniority-0 subspace.

Results for the lowest T � 0, 1, and 2 states are shown in
Fig. 2. The T � 0 solution corresponds to the ground state
while the T � 1 and T � 2 solutions are excited states in
64Ge. As in SU(2), the different configurations can be
classified in the weak-coupling limit. At weak coupling
(g! 0) eight pairs occupy the f7=2 level and four pairs are
in the p3=2 level for the state with T � 0. This is reflected
in the upper left panel of Fig. 2 where 8 pair energies
appear close to 2"f7=2

and 4 pair energies are close to
2"p3=2

making the corresponding terms in (7) dominant.
Because of the Pauli principle, this configuration is not
allowed for a state with T � 1 and, correspondingly, one
pair energy is close to 2"f5=2

. In all cases the!� parameters
are intertwined with the pair energies e�. The number of
!� parameters (M� T), together with the initial configu-
ration at weak coupling, defines each eigenstate of the
np-pairing Hamiltonian. As jgj increases, the e� and !�

parameters expand in the complex plain. The solutions are
subject to numerical instabilities due to singularities aris-
ing when a real pair energy e� crosses a single-particle
energy or when real e� and !� parameters cross. An
FIG. 2. Complex-plane representation of the pair energies e�
and spectral parameters !� for the lowest-energy states with
isospin T � 0; 1; 2 in 64Ge. The left panel corresponds to weak
coupling g � �0:05 and the right panel to strong coupling g �
�0:5. The squares represent the three lowest single-particle
energies (2"f7=2

� 0:00, 2"p3=2
� 12, 2"f5=2

� 12:5), the black
circles are the pair energies e�, and the gray circles are the
parameters !�. All energies are in MeV.
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FIG. 3. Eigenenergies and occupation probabilities of single-
particle levels of the T � 0, 1, and 2 states in 64Ge as a function
of the pairing strength g.
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example of the first class of crossings can be observed in
Fig. 2 for T � 2 where the pair energy above the p3=2 level
at weak coupling goes down with increasing g and crosses
the p3=2 single-particle energy. The T � 1 case shows an
exchange of positions on the real axis of a pair energy e�
and a !� parameter as an example of the second class of
singularities. The first class of singularities was already
present in SU(2) pairing and precluded the practical use of
Richardson’s solution for a long time. Recently, a new
method to overcome this numerical problem was proposed
[19]. We believe that the same procedure can be used to
treat the second class of singularities as well, allowing the
exact solution of the SO(5) model for very large systems.

As a further illustration of the method we show in Fig. 3
the eigenenergies and the occupation probabilities of
single-particle levels as a function of the pairing strength.
The occupation probabilities can be obtained making use
of Hellmann-Feynman theorem which expresses them in
terms of derivatives of the eigenvalues of the integrals of
motion ri as hNp;ii � 1� @ri

@� , and hNn;ii � ri � g
@ri
@g �

�1� ���1� @ri
@�� � 1. These derivatives can be related to

the derivatives of the spectral parameters e� and!�, which
in turn can be obtained taking the derivatives of the
Richardson equations (3).

In summary, as an application of generalized RG mod-
els, we have presented the complete solution of the SO(5)
isovector np-pairing problem. The generalization allows
the introduction of one-body symmetry-breaking terms,
such as nondegenerate single-particle energies, yielding
an exact solution of the SO(5) np-pairing model for arbi-
07250
trary seniorities even if it includes an isospin-breaking
term. The numerical solution of the SO(5) Richardson
equations was presented for the specific example of 64Ge,
together with a discussion of the behavior of the spectral
parameters for weak and strong pairing. With this work the
exact solution for large systems with SO(5) symmetry is
now available which could be of great importance in
condensed-matter physics when addressing the phenome-
non of high-Tc superconductivity [12,13]. Finally, the
treatment of higher-rank algebras like Sp(6) and SO(8)
opens the possibility of exact nuclear structure calculations
with more realistic quantum integrable models.
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