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We describe a class of exactly-solvable models of interacting bosons based on the algebra SO(3, 2). Each
copy of the algebra represents a system of neutron and proton bosons in a given bosonic level interacting via a
pairing interaction. The model that includes s and d bosons is a specific realization of the IBM2, restricted to
the transition regime between vibrational and γ -soft nuclei. By including additional copies of the algebra, we
can generate proton-neutron boson models involving other boson degrees of freedom, while still maintaining
exact solvability. In each of these models, we can study not only the states of maximal symmetry, but also
those of mixed symmetry, albeit still in the vibrational to γ -soft transition regime. Furthermore, in each of these
models we can study some features of F -spin symmetry breaking. We report systematic calculations as a function
of the pairing strength for models based on s, d , and g bosons and on s, d , and f bosons. The formalism of
exactly-solvable models based on the SO(3, 2) algebra is not limited to systems of proton and neutron bosons,
however, but can also be applied to other scenarios that involve two species of interacting bosons.
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I. INTRODUCTION

In the early 1960s, Richardson [1] showed how to exactly
solve the pure pairing model including nondegenerate single-
particle orbits for both fermion [2] and boson systems [3].
In 2001, Dukelsky, Esebbag, and Schuck [4] showed how to
generalize Richardson’s solution, making use of analogous
work by Gaudin [5] for spin models, so that the resulting
Richardson-Gaudin models can now describe the physics of
a wide variety of strongly-correlated many-body quantum
systems governed by pairing correlations. Many interesting
applications of these exactly-solvable models have been
reported recently, to ultrasmall superconducting grains [6],
to nuclear superconductivity [7], to the nuclear interacting
boson model [8,9], and to Bose Einstein condensates [10]. The
methods have been applied both to fermion and boson systems,
invariably yielding useful insight into the properties of the
complex quantum systems they model [11]. Furthermore, with
slight generalization the methods have also proven useful in the
description of mixed systems involving atoms (either bosonic
or fermionic) coupled to molecular dimers in the presence of
a Feshbach resonance [12].

All of the above models were based on the treatment of
pairing correlations involving identical particles. The relevant
algebraic structure for describing identical-particle pairing is
SU(2) for fermions or SU(1,1) for bosons. Both are rank-one
algebras with just one Cartan generator. There have been
several efforts to derive exactly-solvable Richardson-Gaudin
models based on larger rank algebras [13,14]. In particular, the
rank-two SO(5) algebra describing isovector proton-neutron
pairing was treated in Ref. [15]. More recently, the complete
solution of the SO(5) Richardson-Gaudin model was presented
in Ref. [16]. This made possible an exact treatment of isovector
proton-neutron pairing in the presence of nondegenerate
single-particle levels, which was used in a description of the
N = Z nucleus 64Ge in an extended shell-model space.

In this paper, we describe the first example of an exactly-
solvable Richardson-Gaudin model of interacting bosons that
is based on a rank-two algebra. The model has the algebraic
structure SO(3, 2) and is of relevance to two-component boson
systems. One possible realization is a mixture of 97Rb atoms
in the hyperfine states |F = 1,Mf = 1〉, |F = 1,Mf = −1〉
[17]. While these systems have been studied [18] in mean-field
approximation, more elaborate approximate methods or the
use of exact solutions are needed to study effects beyond
mean field. Here we will concentrate on a different realization,
namely bosonic models of nuclei with distinct proton and
neutron degrees of freedom. When only s and d bosons
are included, the resulting models are restricted versions of
the proton-neutron interacting boson model (IBM2) [19], in
the transitional regime between γ -unstable and vibrational
nuclei. At the same time, however, their generality makes
it possible to address many issues that cannot be discussed
within the context of the IBM2. In particular, the models can
readily accommodate boson degrees of freedom other than
just s and d, still within a proton-neutron framework. As such,
they can address issues related to the proton-neutron degree
of freedom in boson models with g bosons and/or f bosons.
The models can also accommodate F -spin breaking, which
can thus likewise be studied in the presence of bosons other
than s and d.

The outline of the paper is as follows. We begin in Sec. II
with a brief overview of the SO(3, 2) algebra, confirming that
it is indeed a rank-two algebra and obtaining its associated
integrals of motion. In Sec. III, we show how this formalism
can be used to build exactly-solvable models of relevance to
interacting neutron and proton bosons in atomic nuclei. In
Sec. IV we consider as specific examples models involving
sd, sdg and sdf degrees of freedom and describe their exact
solutions in a variety of scenarios. In Sec. V, we summarize
the principal conclusions of this work.
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II. SO(3, 2) AND ITS CARTAN DECOMPOSITION

In this section, we briefly review the elements of the Cartan
decomposition of the SO(3, 2) Lie algebra and show how it
can be used to build the set of integrals of motion for models
based on multiple copies of this algebra.

We will be considering a problem involving neutron and
proton boson degrees of freedom, with creation and anni-
hilation operators l

†
ρm and lρm, respectively. These operators

create/annihilate a boson of angular momentum l, projection
m and type ρ.

Now consider the set of bilinear boson operators (ρ, ρ ′ =
ν or π )

l†ρlρ ′ =
∑
m

l†ρmlρ ′m,

b
†
−1l = (−1)l/2l†ν · l†ν,

(1)
b
†
0l = (−1)l/2

√
2l†π · l†ν,

b
†
+1l = (−1)l/2l†π · l†π ,

and the corresponding two-boson annihilation operators
b−1l , b0l , b+1l . Here the scalar product l†ρ · l

†
ρ ′ has the usual

definition

l†ρ · l
†
ρ ′ = (−1)l

∑
m

(−1)l−ml†ρ,ml
†
ρ ′,−m.

For each l, there are four particle-hole operators, three pair
creation operators, and three pair annihilation operators. All
told, these ten operators generate an SO(3, 2) algebra.

The Cartan decomposition of this algebra is achieved by
rewriting the set of one-body operators as

H 1
l = Fzl = 1

2

{∑
m

(l†πmlπm − l†νmlνm)

}
,

H 2
l = 1

2
(l†π lπ + l†ν lν + (2l + 1)),

(2)
F+

l = l†π lν = (−1)l l†π · l̃ν ,
F−

l = l†ν lπ = (−1)l l†ν · l̃π .

It can be readily confirmed that [H 1
l , H 2

l ] = 0. As there are
no other generators that simultaneously commute with both,
SO(3, 2) is a rank-two algebra and these two operators generate
the Cartan subalgebra. (Note: the factor 1/2 is included in
the Cartan operators to ensure that the Cartan-Weyl basis is
orthonormal with respect to the Killing form of Ref. [20].)

The remaining generators are the ladder operators of the
algebra. F+

l and b
†
lµ are the raising operators and correspond-

ingly F−
l and blµ are the lowering operators.

Knowing the Cartan decomposition for each l, we can
obtain the associated set of integrals of motion Rl , following
Ref. [14]. The complete set of hermitean and mutually
commuting operators with linear and quadratic terms in the
rational model can be expressed in the form

Rl = �

2g
H 1

l + 1

2g
(2 + �) H 2

l +
∑
l′(�=l)

Xl · Xl′

zl′ − zl

, (3)

where Ha
l (a = 1, 2) are the two Cartan operators of the copy

l, and

Xl · Xl′ = Fl · Fl′ + H 2
l H 2

l′ − 1

4

∑
µ=−1,0,1

(b†µlbµl′ + b
†
µl′bµl).

(4)

For a problem involving K copies of a rank-two SO(3, 2)
algebra the integrals of motion depend on a total of K + 2 free
parameters, the K coefficients zl and the two parameters, �

and g, that enter in the linear term of Eq. (3).
The exact solutions of the rational model correspond to

solving the eigenvalue equations

Rl|�(eα, ωγ )〉 = rl|�(eα, ωγ )〉. (5)

The eigenvalues rl can be written as

rl = 1

2g
(Uπl + Uνl + �Uπl) + 1

2g
(2 + �)	l

+ 1

2

∑
l′(�=l)

1

zl′ − zl

(	l(Uπl′ + Uνl′) + 	l′ (Uπl + Uνl)

+ 2	l	l′ + UπlUπl′ + UνlUνl′ ) + 1

2
(Uπl − Uνl)

×
M1∑
γ=1

1

ωγ − zl

+ (Uνl + 	l)
M2∑
α=1

1

eα − zl

, (6)

where Uρl(ρ = π and ν) are the number of unpaired ρ

bosons (i.e., the seniority) in the lowest weight state of the
level l, and which define completely the SO(3, 2) irreducible
representation of copy l. Also, 	l = (2l + 1)/2 is proportional
to the degeneracy of the levels, M1 = Nπ − ∑

l Uπl is the
total number of paired π bosons, and M2 ≡ M = 1

2 (Nπ −∑
l Uπl + Nν − ∑

l Uνl) is the total number of pairs. Finally,
ωγ (γ = 1, . . . ,M1), and eα(α = 1, . . . , M2) are two sets of
spectral parameters that must satisfy the set of coupled
equations

∑
l

Uπl − Uνl

zl − ωγ

+
M1∑

δ(�=γ )

2

ωδ − ωγ

−
M2∑
β

2

eβ − ωγ

= −�

g
,

(7)∑
l

Uνl + 	l

zl − eα

+
M2∑

β(�=α)

2

eβ − eα

−
M1∑
δ

1

ωδ − eα

= − 1

g
.

These are generalized Richardson equations appropriate to the
SO(3, 2) algebra.

Once the free parameters that define the Rl integrals of
motion have been chosen, any linear combination,∑

l

ηlRl, (8)

of those integrals of motion also gives rise to an exactly-
solvable model for the multiple copies of the SO(3, 2) algebra,
with eigenvalues obtained from the corresponding rl’s. Of
course, any constant can be added to the Hamiltonian without
affecting the exact solvability of the model.

For the scenario under discussion, a system of interacting
neutron and proton bosons in several levels, it is obviously
desirable that the exactly-solvable models that emerge have
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the appropriate single-particle energies for the various boson
degrees of freedom. This is accomplished by requiring that the
coefficients ηl that define the linear combination of integrals
of motion are proportional to the single-particle energies of
the corresponding boson levels (ηl = 2gεl). If we furthermore
choose the zl parameters that enter in the definition of the
integrals of motion according to zl = 2εl , the two-body part
of the model Hamiltonian likewise emerges in a very simple
form, one in which the interaction matrix elements are level
independent. Furthermore, the constant term that is added to
the Hamiltonian can be chosen so as to leave it in a convenient
form.

With these choices, the form of the Hamiltonian that
emerges for multiple copies of the SO(3, 2) algebra is

H = 2g
∑

l

εlRl + c1̂

=
∑

l

εl

(
N̂πl + N̂νl + �N̂πl

) + g

4

∑
ll′µ

b
†
µlbµl′

−g

2
F · F + g

2
(B(Uπ,Uν) + C) 1̂, (9)

where

F =
∑

l

Fl, (10)

c = g
∑

l′>l 	l	l′ − (2 + �)
∑

l εl	l is a constant, and 1̂ is
the identity operator.

The diagonal term in the last line of Eq. (9) depends on

B(Uπ,Uν) =
∑

l

(
U 2

πl + U 2
νl

2
+ (Uπl + Uνl)	l − Uνl − 2Uπl

)
,

(11)

a function of the seniorities, and a constant C = N (4	 + 6 −
N )/4, with 	 ≡ ∑

l 	l , and N the total number of bosons
(N ≡ ∑

l Nπl + ∑
l Nνl ).

The eigenvalues of the above Hamiltonian (2g
∑

l εlrl + c)
can be expressed as

E =
∑

l

εl(Uπl + Uνl + �Uπl) +
∑

α

eα + g

2

[
�

g

∑
γ

ωγ

− (−Fz)(−Fz + 1)

]
+ g

2
(B(Uπ,Uν) + C), (12)

where Fz = (Nπ − Nν)/2. The first term on the right hand
side is the single particle energy of the unpaired bosons, the
second one is the energy of the boson pairs, whereas the term
in brackets is related to F -spin symmetry. It is possible to show
that in the F -spin-symmetric limit (� → 0), both terms in the
brackets combine to give

lim
�→0

[
�

g

∑
γ

ωγ − (−Fz)(−Fz + 1)

]
= −F (F + 1).

It is especially convenient to rewrite the Hamiltonian (9) in
multipole-multipole form, to facilitate a link to the traditional
phenomenological Hamiltonians used in bosonic descriptions

of nuclei. The Hamiltonian (9) expressed in terms of multipoles
can be written as

H =
∑

l

εl

(
N̂πl + N̂νl + �N̂πl

) − g

4

∑
l<l′

l′+l∑
L=|l′−l|

(−)L

× (
QL

lν l′ν
+ QL

lπ l′π

) · (
QL

l′ν lν
+ QL

l′π lπ

)
, (13)

where

QL
lρl′ρ

= (
l†ρ l̃

′
ρ − (−)l+

l+l′
2 l′†ρ l̃ρ

)L
. (14)

III. SO(3, 2) AND THE PROTON-NEUTRON INTERACTING
BOSON MODEL

The multicopy SO(3, 2) formalism described in the pre-
ceding section has relevance to the proton-neutron interacting
boson model of atomic nuclei [19]. In this model, distinct
neutron and proton bosons are introduced to model collective
pairs of identical nucleons. The standard version of the model
is limited to s and d bosons, reflecting the fact that the
energetically lowest pairs of identical nucleons are invariably
those with JP = 0+ and JP = 2+ and that they are typically
well separated from all higher pairs. The resulting model,
usually called the IBM2, has been used to describe successfully
the collective properties of nuclei throughout the periodic
table.

Soon after the introduction of the IBM2, it became clear
that there was a natural connection of the model both to the
nuclear shell model and to the simpler IBM1 model with but
one kind of boson.

The relationship to the shell model is contained in the
association of the bosons with the lowest collective pairs of
identical nucleons. Thus, it is possible to use input from the
shell model to help define the Hamiltonian that acts in the
IBM2 model space.

The relationship to the IBM1 comes through the introduc-
tion of a quantum number called F spin that distinguishes
the two species in IBM2, the neutron and proton bosons. In
an IBM2 Hamiltonian that conserves this quantum number,
the lowest states of the system are those that are maximally
symmetric in F -spin, in other words maximally symmetric
under the interchange of neutron and proton bosons. It is these
states that are modelled by the simpler IBM1. However, the
IBM2 also contains states that are not maximally symmetric
under the interchange of neutron and proton bosons, states
that are said to have mixed symmetry. In an F -spin conserving
version of IBM2, these states are decoupled from the states of
maximal F -spin symmetry.

With the above as background, we are now in a position to
discuss the relationship between the exactly-solvable models
that derive from the SO(3, 2)algebra and the IBM2. In
particular, if we limit our discussion to two copies of the
algebra, one involving an l = 0 s boson and the other involving
an l = 2 d boson, then we arrive precisely at a Hamiltonian
of the IBM2 form. It is, however, not the most general IBM2
Hamiltonian. Rather, as we will see shortly it is a Hamiltonian
that models the transition between vibrational (U(5)) and
γ -soft (SO(6)) nuclei within an IBM2 framework.
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The Hamiltonian that derives in a two-copy s-d realization
of SO(3, 2) has the form [see Eqs. (13) and (14), with l, l′ =
s, d only, and taking εs = 0]

H = εd (N̂πd + N̂νd + �N̂πd )

− g

4

(
Q̂2

π + Q̂2
ν

) · (
Q̂2

π + Q̂2
ν

)
, (15)

where
Q̂2

ρ = s†ρd̃ρ + d†
ρ s̃ρ . (16)

Its eigenvalues can be obtained from Eq. (12).
There are a couple of features of this Hamiltonian worthy

of note. The first is that as mentioned above it is not a
completely general IBM2 Hamiltonian, as the quadrupole
operator is restricted to χ = 0. Second, the Hamiltonian
contains a term �N̂πd , which arises if the single-boson
splittings between the s and d levels in the two species
(neutrons and protons) are different, and which will in general
break F -spin symmetry. F -spin symmetry is only preserved
if � = 0. Finally, the quadrupole-quadrupole interaction that
enters is an F = 0 tensor, with a definite relation between the
interactions among the different species. There is no additional
Majorana interaction in the model, as the term gF · F in
Eq. (9) is absorbed completely into the F -spin-scalar
quadrupole-quadrupole interaction. However, when � = 0,
i.e., when F -spin symmetry is preserved, we can add an addi-
tional Majorana term of arbitrary strength while maintaining
the exact solvability of the model.

Perhaps the key feature of the exactly-solvable proton-
neutron boson models that derive from the multi-copy SO(3, 2)
algebra is that they can accommodate boson degrees of
freedom other than just the s and d. Indeed, they can
accommodate any number of boson degrees of freedom, albeit
with the restricted Hamiltonians that can be accessed. As an
example, the model with s, d and g degrees of freedom is of
the form (εs = 0)

H =
∑
l=d,g

εl(N̂πl + N̂νl + �N̂πl)

− g

4

∑
l<l′

∑
L=2,...,6

(−)L
(
QL

lν l′ν
+ QL

lπ l′π

) · (
QL

l′ν lν
+ QL

l′π lπ

)
.

(17)

Note that it contains all multipole interactions from L = 2
to L = 6. Once again, all enter as F = 0 tensors, with no
additional Majorana interaction present. Here too, however, a
Majorana interaction of arbitrary strength can be included if
� = 0 so that F -spin is conserved.

Likewise, we can accommodate f bosons, either with or
without g bosons, still in a proton-neutron boson framework.
When considering sd and f bosons, for example, the class of
Hamiltonians that arise are (εs = 0)

H =
∑

l=d,f

εl(N̂πl + N̂νl + �N̂πl) − g

4

∑
l<l′

∑
L=1,...,5

(−)L

× (
QL

lν l′ν
+ QL

lπ l′π

) · (
QL

l′ν lν
+ QL

l′π lπ

)
. (18)

Note that now we only have multipoles from L = 1 through
5. The L = 1, 3, 4, and 5 multipoles all have odd parity; the

L = 2 multipole has an even-parity component (l, l′ = s, d)
and an odd-parity component (l, l′ = d, f ).

IV. APPLICATIONS OF EXACTLY-SOLVABLE
PROTON-NEUTRON INTERACTING BOSON MODELS

DERIVED FROM THE SO(3, 2) ALGEBRA

In this section, we apply the various exactly-solvable model
Hamiltonians developed in the previous section to scenarios
of relevance to the collective structure of atomic nuclei.

We first consider a model of s, d and g interacting neutron
and proton bosons, for which the relevant Hamiltonian was
given in Eq. (17). We compare the results for this model with
those of the corresponding model with just s and d bosons,
[see Eq. (15)]. The analysis is carried out as a function of the
pairing strength g, for fixed single-boson energies, with the
results shown in Fig. 1.

The complete Hilbert space of the model can be split into
invariant subspaces characterized by the seniority numbers
(Uπl, Uνl). For each seniority, one has to solve a different set
of Richardson equations (7) to obtain the eigenvalues (12).
The angular momenta, parities, and F -spin quantum numbers
associated with the set of seniorities we consider are shown in
Table I.

The top panel in Fig. 1 gives the results for the sd model
and the bottom panel gives the sdg results. All energies are
measured with respect to that of the ground state.

In the case of the sd model, we use εd = 1 MeV and εs =
0 MeV, and the relevant seniorities are those with Ug = 0 in
Table I. For the sdg model, we again use εd = 1 MeV, and
εs = 0 MeV, but now include a g boson at εg = 1.6 MeV.
In this case, we consider all the seniorities of Table I. The
level energies chosen are physically reasonable for the various
boson degrees of freedom. In both calculations, we consider a
system of N = 20 bosons, with Nν = Nπ = 10 (Fmax = 10).
Furthermore, we assume � = 0 so that F -spin symmetry is
preserved.

Note that g = 0 corresponds to the precise U(5) limit in
the sd model and to the corresponding vibrational limit in

TABLE I. Seniorities considered in the sd and sdg calculations
and their associated angular momenta, parities and F -spin quantum
numbers.

(UπsUνsUπdUνdUπgUνg ) F J P

(0 0 0 0 0 0) 0, 1, . . . , Fmax 0+

(0 1 0 1 0 0) 0, 1, . . . , Fmax 2+

(0 1 0 0 0 1) 0, 1, . . . , Fmax 4+

(0 0 0 2 0 0) 0, 1, . . . , Fmax 2+, 4+

(0 0 1 1 0 0) 0, 1, . . . , Fmax − 1 1+, 3+

(0 0 0 1 0 1) 0, 1, . . . , Fmax 2+, 3+, 4+, 5+, 6+

(0 0 0 0 0 2) 0, 1, . . . , Fmax 2+, 4+, 6+, 8+

(0 0 0 0 1 1) 0, 1, . . . , Fmax − 1 1+, 3+, 5+, 7+

(0 1 0 3 0 0) 0, 1, . . . , Fmax 0+, 3+, 4+, 6+

(0 0 0 4 0 0) 0, 1, . . . , Fmax 2+, 4+, 5+, 6+, 8+

(0 1 0 2 0 1) 0, 1, . . . , Fmax 0+, 1+, . . . , 8+

(0 1 0 1 0 2) 0, 1, . . . , Fmax 0+, 1+, . . . , 10+
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FIG. 1. Excitation energies of the sdg Hamiltonian in Eq. (17)
(bottom panel) compared to those of the sd Hamiltonian in Eq. (15)
(top panel), as a function of the interaction strength g and for the
seniorities of Table I. Continuous lines correspond to maximal F -spin
states, dashed and circled lines refer to mixed symmetry states (F =
Fmax − 1). Thick and circled lines in the bottom panel indicate states
with unpaired g bosons (Ug �= 0), for maximal and mixed symmetry
states respectively. Except for J P = 2+, only the first excited state
of each seniority is shown. Only those mixed symmetry states up to
total seniority two are presented. The single-boson energies are given
in the text.

the sdg model. As the pairing strength g increases, there is a
phase transition to a γ -unstable system, occurring at roughly
g = 0.08 MeV.

Some interesting features can be noted in these results.
Inclusion of the g level in the calculation increases significantly
the number of possible JP states (indicated by thick and circled
lines in the bottom panel of Fig. 1, see Table I), but otherwise
leaves most of the states of the sd model relatively unaffected.
For a few states, however, and in particular the levels denoted
0+, 0+

ms, and 2+
2 , there are important and interesting changes

that take place. As an example, consider the first excited 0+
state. In the sd calculation, its energy goes up as g increases;

FIG. 2. Excitation energies of the sdg Hamiltonian in Eq. (17)
(top panel) for seniority-zero states (J P = 0+). The thickness of the
lines serves as a guide to the eye to distinguish the band structure
of the spectrum (α, β, γ, δ). Only the first two states for each band
are plotted. In the bottom panel the pair energies (eα, α = 1, . . . , 10)
associated with the ground state (GS), the first (α1) and second (α2)
states of the lowest excited band, and the first (β1) state of the second
excited band are shown (see text for details). All the parameters are
the same as for the bottom panel of Fig. 1.

in the corresponding sdg calculation its energy flattens out.
A similar effect can be seen for the 0+

ms and 2+
2 states, which

likewise are flattened out in energy.
To better illustrate this phenomenon and how it arises, we

present in the bottom panel of Fig. 2 the pair energies (eα)
associated with some selected seniority-zero states (JP = 0+)
of the sdg model, as a function of the interaction strength. We
also show the associated spectrum of levels in the top panel of
the figure.

For the ground state of the system (GS), all pair energies
are trapped between 2εd and 2εs . Then there are a series of
levels in which one or more of the pair energies are promoted
into the energy region from 2εd to 2εg . The corresponding
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levels are likewise trapped, as their energies are simply a sum
of the associated pair energies. The lowest is α1, with but one
pair excited. The next is α2, with two pairs excited. And as
should be evident there are many other such states, in which
at least one pair is between 2εg and 2εd , but in which none are
above 2εg . For simplicity, however, we only show the lowest
two levels of this band.

Next we consider levels in which one pair is excited above
2εg . The lowest such level is denoted β1 in both panels. Since
the last pair is not trapped, this level goes up in energy as g

increases. Furthermore, there will be a band of levels in which
just one pair has been excited above 2εg . Once again, however,
we only show the two lowest states of the band.

Finally, we show two other bands in the spectrum, denoted
γ and δ. They correspond to two and three pairs above 2εg ,
respectively. They too are unbounded as a function of g.
Of course there are higher bands as well, corresponding to
progressively more pairs being excited above 2εg .

As should be clear from the figures and the discussion, this
unusual behavior for selected levels occurs whenever there are
more than two boson levels active and a repulsive boson-boson
pairing interaction [9].

As noted earlier, the trapping of pair energies is not
restricted to 0+ states. Indeed, the band structure found for
seniority-zero states is a feature common to all seniority
sectors. However, for the states with seniority different from
zero the term (g/2)B(Uπ,Uν) in the eigenvalues (12) also
contributes, making the excitation energies for such states
unbounded as a function of the interaction strength g. Never-
theless, these states likewise arise from trapped pair energies
and thus are also flattened out as a function of g.

For the mixed-symmetry states in the � = 0 limit, the term
in brackets in Eq. (12) produces a contribution to the excitation
energy,

g

2
(Fmax(Fmax + 1) − F (F + 1)) ,

thereby explaining why they appear at higher energy than the
maximal F -spin states. As was mentioned above, however,
when � = 0 it is possible to add a Majorana term of arbitrary
strength, and thus move the location of the mixed-symmetry
states at will with respect to those of maximal F -spin.

We next consider the effect of including an f boson,
focussing now on an sdf boson model. In Fig. 3, we present
the results for this model as a function of g, for the
case of εs = 0 MeV, εd = 1 MeV and εf = 1.6 MeV. The
seniorities that were considered in this calculation are listed in
Table II.

Thus, this model is very similar to the sdg model shown
in Fig. 1, with the f boson replacing the g boson at precisely
the same energy. Here too the second 0+ level is trapped,
as this is a general phenomenon that occurs whenever there
are more than two boson degrees of freedom and a repulsive
pairing interaction. Indeed, the spectra for the sdf and sdg
models as a function of g are very similar. The exactly-solvable
SO(3, 2) Richardson-Gaudin models do not couple states
with broken pairs, which is where differences would have
shown up.

FIG. 3. Excitation energies of the sdf Hamiltonian in Eq. (18) as
a function of the interaction strength g, for the seniorities of Table II.
Continuous lines correspond to maximal F -spin states, dashed and
circled lines refer to mixed symmetry states (F = Fmax − 1). Thick
and circled lines indicate states with unpaired f bosons (Uf �= 0), for
maximal and mixed F -symmetry states, respectively. Only the first
excited sate of each seniority is shown. For mixed symmetry states,
only states up to total seniority two are plotted. The single-boson
energies are given in the text.

V. SUMMARY AND CONCLUSIONS

In this paper, we have described the first example of
an exactly-solvable Richardson-Gaudin model based on a
rank-two algebra for bosons. The example we discussed
involved multiple copies of the SO(3, 2) algebra. We focused
on a specific realization involving proton and neutron bosons
subject to a pairing interaction. The models that emerged are
exactly solvable for nondegenerate single-boson energies and
for any number of bosonic copies. When only s and d bosons
are included, the resulting model is a specific example of
the proton-neutron interacting boson model (IBM2), limited

TABLE II. Seniorities considered in the sdf calculations and their
associated angular momenta, parities and F -spin quantum numbers.

(UπsUνsUπdUνdUπf Uνf ) F J P

(0 0 0 0 0 0) 0, 1, . . . , Fmax 0+

(0 1 0 1 0 0) 0, 1, . . . , Fmax 2+

(0 1 0 0 0 1) 0, 1, . . . , Fmax 3−

(0 0 0 2 0 0) 0, 1, . . . , Fmax 2+, 4+

(0 0 1 1 0 0) 0, 1, . . . , Fmax − 1 1+, 3+

(0 0 0 1 0 1) 0, 1, . . . , Fmax 1−, 2−, 3−, 4−, 5−

(0 0 0 0 0 2) 0, 1, . . . , Fmax 2+, 4+, 6+

(0 0 0 0 1 1) 0, 1, . . . , Fmax − 1 1+, 3+, 5+

(0 1 0 3 0 0) 0, 1, . . . , Fmax 0+, 3+, 4+, 6+

(0 0 0 4 0 0) 0, 1, . . . , Fmax 2+, 4+, 5+, 6+, 8+

(0 1 0 2 0 1) 0, 1, . . . , Fmax 1−, 2−, . . . , 7−

(0 1 0 1 0 2) 0, 1, . . . , Fmax 0+, 1+, . . . , 8+
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however to the transition from vibrational to γ -soft motion.
Other bosonic degrees of freedom, such as the g and/or f , can
be readily included while still preserving the exact solvability
of the model. Through the use of these models, we can
address issues related to the role of mixed-symmetry states
in proton-neutron boson models with many boson degrees of
freedom. We can even study some limited features associated
with F -spin symmetry breaking for these multicopy boson
models.

One issue addressed here concerned the role of the g

boson in proton-neutron boson models. We compared the
results of sd calculations with those of sdg calculations for
an F -spin-symmetric Hamiltonian, throughout the vibrational
to γ -soft transition region, and saw that in the presence of a
g boson several low-lying excited states have their properties
dramatically modified as the result of a trapping phenomenon
for the pair energies.

We also studied the role of the f boson, in the context of an
sdf model of interacting proton and neutron bosons. Because
of some special features of the exactly-solvable models that
we treat, there were no meaningful differences between the
sdg and sdf results, except of course as regards the angular
momentum content of the collective states.

The models that we have developed are not limited,
however, to proton-neutron boson models of nuclei. Any
physical problem involving two species of bosons in which
pairing is dominant can be modelled in this way. In Sec. I, we
noted the possibility of applying these models to problems
involving a mixture of 97Rb atoms in the hyperfine states
|F = 1,Mf = 1〉, |F = 1,Mf = −1〉. The availability of an
exactly-solvable model with which to study such systems,
makes it possible to study effects that go beyond the limited
mean-field descriptions considered to date.
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