1,028 research outputs found
Fragmentation sensitivity and its consequences on demography and host-ectoparasite dynamics in amazonian birds
The Amazon rainforest is experiencing rapid deforestation due to ranching, agriculture, and urban development, which often leads to remnant patches serving as refugia for forest organisms. By mist-netting passerines in 11 forest fragments (1-, 10-, and 100-ha patches) and nearby continuous forest at the Biological Dynamics of Forest Fragmentation Project near Manaus, Brazil, I conducted a series of studies to identify mechanisms that drive population changes in fragmented landscapes. First, I examined the age structure of bird populations from six ecological guilds in fragments and continuous forest. Immatures are the dispersing age group in birds, and their relative abundance in fragments was often driven by the age of regenerating second growth surrounding fragments. The relative abundance of adults, the resident age group, in fragments was often driven by patch size. Differences in how guilds responded to fragmentation depended on their dispersal propensity, measured with mark–recapture techniques, with increasing dispersal propensity corresponding to increased relative abundance of immatures in fragments. Second, I quantified variation in the frequency of molting and breeding simultaneously (called molt–breeding overlap; MBO) among species. I propose that molting and breeding simultaneously requires a consistent or predictable environment, like a humid rainforest understory. Frequent molt–breeding overlap may preclude living in more seasonally fluctuating environments like rainforest fragments. Suboscines, particularly antbirds, had more frequent MBO and were more sensitive to fragmentation than oscine. Finally, I examined the consequences of fragmentation on host–ectoparasite dynamics. Feather mites, haematophagous mites, and chewing lice showed similar richness and abundance on hosts that occupied either interior forests or fragment edges. In Thamnophilidae and frugivores, ectoparasite removal caused an increase in body condition, but only for hosts occupying interior forests and not those on fragment edges. Feather mites were beneficial to hosts in interior forest, but became harmful along edges, suggesting that fragmentation can alter delicate host–parasite dynamics in complicated ways. Understanding these relationships may help explain host population declines in fragmented landscapes
Advances in the theory of III-V Nanowire Growth Dynamics
Nanowire (NW) crystal growth via the vapour_liquid_solid mechanism is a
complex dynamic process involving interactions between many atoms of various
thermodynamic states. With increasing speed over the last few decades many
works have reported on various aspects of the growth mechanisms, both
experimentally and theoretically. We will here propose a general continuum
formalism for growth kinetics based on thermodynamic parameters and transition
state kinetics. We use the formalism together with key elements of recent
research to present a more overall treatment of III_V NW growth, which can
serve as a basis to model and understand the dynamical mechanisms in terms of
the basic control parameters, temperature and pressures/beam fluxes.
Self-catalysed GaAs NW growth on Si substrates by molecular beam epitaxy is
used as a model system.Comment: 63 pages, 25 figures and 4 tables. Some details are explained more
carefully in this version aswell as a new figure is added illustrating
various facets of a WZ crysta
Dependence of the Cyanobacterium Prochlorococcus on Hydrogen Peroxide Scavenging Microbes for Growth at the Ocean's Surface
The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH). In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect) biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co-existing species
Dependence of the Cyanobacterium Prochlorococcus on Hydrogen Peroxide Scavenging Microbes for Growth at the Ocean\u27s Surface
The phytoplankton community in the oligotrophic open ocean is numerically dominated by the cyanobacterium Prochlorococcus, accounting for approximately half of all photosynthesis. In the illuminated euphotic zone where Prochlorococcus grows, reactive oxygen species are continuously generated via photochemical reactions with dissolved organic matter. However, Prochlorococcus genomes lack catalase and additional protective mechanisms common in other aerobes, and this genus is highly susceptible to oxidative damage from hydrogen peroxide (HOOH). In this study we showed that the extant microbial community plays a vital, previously unrecognized role in cross-protecting Prochlorococcus from oxidative damage in the surface mixed layer of the oligotrophic ocean. Microbes are the primary HOOH sink in marine systems, and in the absence of the microbial community, surface waters in the Atlantic and Pacific Ocean accumulated HOOH to concentrations that were lethal for Prochlorococcus cultures. In laboratory experiments with the marine heterotroph Alteromonas sp., serving as a proxy for the natural community of HOOH-degrading microbes, bacterial depletion of HOOH from the extracellular milieu prevented oxidative damage to the cell envelope and photosystems of co-cultured Prochlorococcus, and facilitated the growth of Prochlorococcus at ecologically-relevant cell concentrations. Curiously, the more recently evolved lineages of Prochlorococcus that exploit the surface mixed layer niche were also the most sensitive to HOOH. The genomic streamlining of these evolved lineages during adaptation to the high-light exposed upper euphotic zone thus appears to be coincident with an acquired dependency on the extant HOOH-consuming community. These results underscore the importance of (indirect) biotic interactions in establishing niche boundaries, and highlight the impacts that community-level responses to stress may have in the ecological and evolutionary outcomes for co-existing species.
DOI: 10.1371/journal.pone.001680
Diversidade, biomassa, e estrutura trófica de uma comunidade de aves de floresta tropical na Amazônia central
Amazonian forest bird communities are among the richest in the world. Even so, relatively little is known about the organization of the entire avian community at local scales or about differences across Amazonia. These are fundamental data not only for understanding the processes generating and maintaining tropical diversity, but also as a baseline for evaluating anthropogenic changes to Amazonian forests. Here we provide a description of the entire bird community for a 100 ha plot of terra firme forest at the Biological Dynamics of Forest Fragments Project, near Manaus, Brazil, based on spot-map and mist net surveys augmented by additional field and analytical techniques. Although our results are from a single plot surveyed in a single year, our methods and interpretation reflect nearly 30 years of ornithological research at the site. We found 228 species on the plot, of which 207 were considered part of the core regional avifauna. Median density was five individuals/100 ha. Only 13 species (6% of the core species) had densities ≥ 20 individuals on the plot, although 55 species (27%) had ≤ 2 individuals. No species had territories smaller than 3 ha; median territory size was 11 ha for the 103 species for which we could make reasonable estimates. Measured by numbers of species or individuals, the plot was dominated by insectivores (54% of species, 62% of individuals). Biomass, however, was dominated by frugivores and granivores (59%). Compared to available data from other Amazonian forests, our site appears to have comparable richness of a similar set of species, but lower density and greater patchiness. Our results suggest that the area required to support populations of many species will be even greater in central Amazonia than in western Amazonia
Geometrical optimization and electrical performance comparison of thin-film tandem structures based on pm-Si:H and µc-Si:H using computer simulation
International audienceThis article investigates the optimal efficiency of a photovoltaic system based on a silicon thin film tandem cell using polymorphous and microcrystalline silicon for the top and bottom elementary cells, respectively. Two ways of connecting the cells are studied and compared: (1) a classical structure in which the two cells are electrically and optically coupled; and (2) a new structure for which the "current-matching" constraint is released by the electrical decoupling of the two cells. For that purpose, we used a computer simulation to perform geometrical optimization of the studied structures as well as their electrical performance evaluation. The simulation results show that the second structure is more interesting in terms of efficiency
Increased expression of the chemokines CXCL1 and MIP-1α by resident brain cells precedes neutrophil infiltration in the brain following prolonged soman-induced status epilepticus in rats
<p>Abstract</p> <p>Background</p> <p>Exposure to the nerve agent soman (GD) causes neuronal cell death and impaired behavioral function dependent on the induction of status epilepticus (SE). Little is known about the maturation of this pathological process, though neuroinflammation and infiltration of neutrophils are prominent features. The purpose of this study is to quantify the regional and temporal progression of early chemotactic signals, describe the cellular expression of these factors and the relationship between expression and neutrophil infiltration in damaged brain using a rat GD seizure model.</p> <p>Methods</p> <p>Protein levels of 4 chemokines responsible for neutrophil infiltration and activation were quantified up to 72 hours in multiple brain regions (i.e. piriform cortex, hippocampus and thalamus) following SE onset using multiplex bead immunoassays. Chemokines with significantly increased protein levels were localized to resident brain cells (i.e. neurons, astrocytes, microglia and endothelial cells). Lastly, neutrophil infiltration into these brain regions was quantified and correlated to the expression of these chemokines.</p> <p>Results</p> <p>We observed significant concentration increases for CXCL1 and MIP-1α after seizure onset. CXCL1 expression originated from neurons and endothelial cells while MIP-1α was expressed by neurons and microglia. Lastly, the expression of these chemokines directly preceded and positively correlated with significant neutrophil infiltration in the brain. These data suggest that following GD-induced SE, a strong chemotactic response originating from various brain cells, recruits circulating neutrophils to the injured brain.</p> <p>Conclusions</p> <p>A strong induction of neutrophil attractant chemokines occurs following GD-induced SE resulting in neutrophil influx into injured brain tissues. This process may play a key role in the progressive secondary brain pathology observed in this model though further study is warranted.</p
- …