18 research outputs found

    Reducing MSH4 copy number prevents meiotic crossovers between non-homologous chromosomes in Brassica napus

    Get PDF
    In allopolyploids, correct chromosome segregation requires suppression of non-homologous crossovers while levels of homologous crossovers are ensured. To date, no mechanism able to specifically inhibit non-homologous crossovers has been described in allopolyploids other than in bread wheat. Here, we show that reducing the number of functional copies of MSH4, an essential gene for the main crossover pathway, prevents non-homologous crossovers in allotetraploid Brassica napus. We show that non-homologous crossovers originate almost exclusively from the MSH4-dependent recombination pathway and that their numbers decrease when MSH4 returns to single copy in B. napus; by contrast, homologous crossovers remain unaffected by MSH4 duplicate loss. We also demonstrate that MSH4 systematically returns to single copy following numerous independent polyploidy events, a pattern that is probably not by chance. These results suggest that stabilization of allopolyploid meiosis can be enhanced by loss of a key meiotic recombination gene

    Cloning and Characterization of Genes Involved in Nostoxanthin Biosynthesis of Sphingomonas elodea ATCC 31461

    Get PDF
    Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a Ξ²-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2β€²-Ξ²-hydroxylase and the crtZ gene encoding the Ξ²-carotene hydroxylase, both responsible for hydroxylation of Ξ²-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and Ξ²-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2β€²-dihydroxy-Ξ²-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed

    Organization of Physical Interactomes as Uncovered by Network Schemas

    Get PDF
    Large-scale protein-protein interaction networks provide new opportunities for understanding cellular organization and functioning. We introduce network schemas to elucidate shared mechanisms within interactomes. Network schemas specify descriptions of proteins and the topology of interactions among them. We develop algorithms for systematically uncovering recurring, over-represented schemas in physical interaction networks. We apply our methods to the S. cerevisiae interactome, focusing on schemas consisting of proteins described via sequence motifs and molecular function annotations and interacting with one another in one of four basic network topologies. We identify hundreds of recurring and over-represented network schemas of various complexity, and demonstrate via graph-theoretic representations how more complex schemas are organized in terms of their lower-order constituents. The uncovered schemas span a wide range of cellular activities, with many signaling and transport related higher-order schemas. We establish the functional importance of the schemas by showing that they correspond to functionally cohesive sets of proteins, are enriched in the frequency with which they have instances in the H. sapiens interactome, and are useful for predicting protein function. Our findings suggest that network schemas are a powerful paradigm for organizing, interrogating, and annotating cellular networks

    Evolutionary flux of canonical microRNAs and mirtrons in Drosophila

    No full text
    Next-generation sequencing technologies generate vast catalogs of short RNA sequences from which to mine microRNAs. However, such data must be vetted to appropriately categorize microRNA precursors and interpret their evolution. A recent study annotated hundreds of microRNAs in three Drosophila species on the basis of singleton reads of heterogeneous length(1). Our multi-million read datasets indicated that most of these were not substrates of RNAse III cleavage, and comprised many mRNA degradation fragments. We instead identified a distinct and smaller set of novel microRNAs supported by confident cloning signatures, including a high proportion of evolutionarily nascent mirtrons. Our data support a much lower rate in the emergence of lineage-specific microRNAs than previously inferred(1), with a net flux of ~1 microRNA/million years of Drosophilid evolution
    corecore