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ARTICLE

Reducing MSH4 copy number prevents meiotic
crossovers between non-homologous
chromosomes in Brassica napus
Adrián Gonzalo1,3, Marie-Odile Lucas2, Catherine Charpentier1, Greta Sandmann1, Andrew Lloyd1,4 &

Eric Jenczewski 1

In allopolyploids, correct chromosome segregation requires suppression of non-homologous

crossovers while levels of homologous crossovers are ensured. To date, no mechanism able

to specifically inhibit non-homologous crossovers has been described in allopolyploids other

than in bread wheat. Here, we show that reducing the number of functional copies of MSH4,

an essential gene for the main crossover pathway, prevents non-homologous crossovers in

allotetraploid Brassica napus. We show that non-homologous crossovers originate almost

exclusively from the MSH4-dependent recombination pathway and that their numbers

decrease when MSH4 returns to single copy in B. napus; by contrast, homologous crossovers

remain unaffected by MSH4 duplicate loss. We also demonstrate that MSH4 systematically

returns to single copy following numerous independent polyploidy events, a pattern that is

probably not by chance. These results suggest that stabilization of allopolyploid meiosis can

be enhanced by loss of a key meiotic recombination gene.
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Polyploidy (Whole-Genome Duplication, WGD) has played
a pervasive role in the evolution of many living organisms1.
Many eukaryotes descend from polyploid ancestors that

experienced massive duplicate gene loss over millions of years
and ultimately reverted to a diploid state1. The long-term survival
of newly formed polyploids depends, however, on their ability to
withstand the extensive genomic instability that accompanies the
onset of polyploid formation. Most notably, nascent allopoly-
ploids, which result from interspecific hybridization followed by
WGDs, require meiotic adaptation to safeguard genome stability
and fertility; otherwise, crossover formation between the chro-
mosomes inherited from the allopolyploid’s progenitors (i.e. the
homoeologues) will disrupt chromosome segregation and result
in the production of aneuploid gametes2,3. Stabilization of allo-
polyploid meiosis thus requires that inter-homoeologue crossover
formation is prevented while levels of homologous crossovers are
ensured.

How meiosis has adapted to cope with allopolyploidy has only
been deciphered in allohexaploid wheat, where a duplication of
the ZIP4 gene within the Ph1 locus prevents maturation of
crossovers between non-homologous chromosomes4–7. ZIP4 is an
essential factor for the main crossover pathway8,9 (called the class
I or ZMM pathway) that also includes a set of other critical
proteins (e.g., MER3, MSH4, MSH5, SHOC1, HEI10, PTD) in
plants. While there are numerous examples of allopolyploids that
have adapted meiosis to prevent homoeologous crossovers, no
other gene has been identified that influences the rate of homo-
eologous recombination in allopolyploids.

In a previous paper10, we proposed that meiotic adaptation in
established polyploids could involve ‘fine-tuning’ the progression
or the effectiveness of meiotic recombination. One potential
pathway to “fine-tune” meiosis in newly-formed polyploids is
through gene loss. This process has recently gained attention as a
driver of functional innovation11,12 and massively affects the
evolution of recent polyploid genomes in a process referred to as
fractionation13. Genes involved in meiotic recombination (and
DNA repair in general14,15) seem especially susceptible to frac-
tionation as they tend to return to a single copy more rapidly than
genome average following subsequent and/or independent
duplications10. In this paper, we ask whether the loss of some
meiotic recombination gene duplicates can contribute to
improved meiosis in these organisms.

To address this question, we first re-evaluate the patterns of
duplicate gene loss and retention for different genes encoding
proteins from the class I crossover pathway. We then describe
how copy number reduction of MSH4 (the ZMM gene that shows
the most rapid fractionation) affects crossover formation in an
allopolyploid (Brassica napus) to potentially enhance meiosis.
Brassica napus (AACC, 2n= 38) is a recent allotetraploid crop
bred for high seed yield, that originated from interspecific
hybridizations between the ancestors of B. rapa (AA, 2n= 20)
and B. oleracea (CC, 2n= 18) ~7500 years ago16. It is also, and
most importantly, one of only two allopolyploid species (along
with bread wheat5–7) for which meiosis has been thoroughly
analyzed17. We focused on crossover formation between both
homologous and homoeologous chromosomes; the latter, which
are rare events in euploids (AACC), are readily quantifiable in
allohaploid plants obtained by microspore culture17. These plants
only contain one unique copy of each chromosome (AC, n= 19)
so that (almost) all crossovers observed in allohaploids involve
homoeologues.

Here, we show that regular meiosis is achieved in B. napus even
when the number of functional MSH4 copies is reduced to a
minimum. By contrast, we demonstrate that the number of
crossovers formed between homoeologues responds to MSH4
dosage. This indicates that loss of oneMSH4 copy has no negative

impacts and is potentially beneficial for B. napus meiosis, which
improves when crossovers between homoeologues are
suppressed.

Results
Convergent loss of duplicated recombination genes post-
WGDs. Building on previous work10, we first measured the
extent to which gene duplicates encoding plant ZMM proteins
were lost or retained following >40 independent plant WGDs
ranging in age from few thousand to more than 150 million years.

Four ZMMs show a conspicuous pattern of rapid duplicate
gene loss following WGDs (Fig. 1; Supplementary Figs. 1–3) with
a single gene encoding MER3, MSH4, MSH5 and ZIP4 proteins
in almost all angiosperms other than the most recent polyploids
(i.e., those that formed <10,000 years ago). In paleopolyploids
that have returned to a diploid state post-WGD, the presence of
duplicates for these four ZMM remains an exception usually
limited to those with the next most recent WGDs: e.g., MSH5 in
Glycine max (5–9 million years old WGD18); MER3 and ZIP4 in
Linum usitatissimum (5–13 million years old WGD19) (Fig. 1;
Supplementary Figs. 1–3). By contrast, a slightly higher number
of duplicates is observed among the genes encoding SHOC1, PTD
and, most importantly, HEI10 (Fig. 1; Supplementary Figs. 4–6).

The most striking example of precipitous ZMM duplicate loss
is MSH4, which shows only one intact copy in all diploid species
(Fig. 1). To determine whether rapid MSH4 duplicate loss post-
WGD is specific to angiosperms, we expanded our analysis to
include a taxonomically broad set of 95 fungi and 39 animal
species that encompass 12 additional WGDs ranging in age from
few thousand to almost 500 million years (Supplementary Figs. 7–
8). Again, we identified only one intact copy of MSH4 in all
species except the very recent polyploids (Zygosaccharomyces
rouxii) and Diplocarpon rosae and Hortaea werneckii, two fungi
that have retained 80 and 95% of gene duplicates post-WGDs,
respectively20,21 (Supplementary Fig. 8). Remnants of a second
copy ofMSH4 carrying inactivating changes were detected in only
three plant (L. usitatissimum, G. max and Populus trichocarpa;
Fig. 1c) and two animal (Salmo salar and Oncorhynchus mykiss;
Supplementary Fig. 7) species. The inactivating changes found
(important sequence gaps, mutations and truncations in exonic
sequences) in these MSH4 pseudogenes, are likely signatures of
ongoing fractionation.

B. napus carries two differentially expressed copies of MSH4.
The results above demonstrate that MSH4 is a textbook case of
the rapid loss of meiotic recombination duplicates following
WGDs; they also indicate that, although very rapid on an evo-
lutionary timescale (i.e., a few million years),MSH4-duplicate loss
is not immediate. As shown in Fig. 1, B. napus contains two full-
length MSH4 homologues, hereafter referred as to BnaA.MSH4
(marked as Brassica napus homoeo2 on Fig. 1) and BnaC.MSH4
(marked as Brassica napus homoeo1 on Fig. 1). These two copies
correspond to homoeologues sensu22. A partial (4 exons instead
of 24) copy of MSH4 was also found tandemly arrayed with
BnaA.MSH4 (Fig. 1; Supplementary Table 1). This additional
copy is not transcribed during meiosis (based on B. napus meiotic
RNAseq23) and was therefore not considered for further analyses.

We observed that BnaA.MSH4 and BnaC.MSH4 are both
transcribed during male meiosis in the three varieties analyzed,
with BnaC.MSH4 contributing most to MSH4 expression in B.
napus; in all varieties, the balance between A/C contribution was
in the range of 1/6 to 1/3 (Supplementary Table 2). This feature is
unique to MSH4 (compared to MSH5, MER3 and ZIP4) and
offers more opportunities to assess the effect of varied ZMM

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10010-9

2 NATURE COMMUNICATIONS |         (2019) 10:2354 | https://doi.org/10.1038/s41467-019-10010-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


a b c
Gene copy number

60
MSH4 MSH4

Juglans regia
Momordica charantia

Citrullus lanatus
Cucumis sativus
Cucumis melo

Ziziphus jujuba
Pyrus bretschneideri
Malus domestica
Prunus persica
Fragaria vesca
Eucalyptus grandis

Linum usitatissimum fract
Linum usitatissimum copy1

Hevea brasiliensis
Manihot esculenta
Jatropha curcas

Populus trichocarpa fract

Populus trichocarpa
Salix purpurea

Arabidopsis thaliana
Arabidopsis lyrata
Capsella rubella
Brassica oleracea

Brassica napus homoeo1
Brassica napus homoeo2
Brassica rapa

Brassica napus fract
Raphanus.sativus

Herrania umbratica
Theobroma cacao

Gossypium arboreum
Gossypium hirsutum homoeo1
Gossypium hirsutum homoeo2
Gossypium raimondii

Citrus sinensis
Citrus clementina
Cephalotus follicularis

Cajanus cajan
Glycine max

Glycine max fract
Lotus japonicus
Medicago truncatula

Cicer arietinum
Mimulus guttatus

Sesamum indicum
Genlisea aurea

Solanum tuberosum
Solanum lycopersicum
Ipomea nil

Coffea eugenioides
Coffea arabica homoeo2
Coffea arabica homoeo1
Coffea canephora

Daucus carota
Cynara cardunculus

Lactuca sativa
Helianthus annuus
Chenopodium quinoa homoeo1
Chenopodium quinoa homoeo2

Spinacia oleracea
Beta vulgaris
Amaranthus hypochondriacus

Macleaya cordata
Aquilegia coerulea
Nelumbo nucifera

Phalaenopsis equestris
Dendrobium catenatum

Asparagus officinalis
Ananas comosus

Oryza sativa jap
Oryza sativa ind
Setaria viridis
Setaria italica

Panicum hallii
Zea mays

Sorghum bicolor
Triticum aestivum homoeo1
Triticum aestivum homoeo2

Triticum aestivum homoeo3
Aegilops tauschii

Hordeum vulgare
Brachipodium distachyon

Elaeis guineensis
Phoenix dactylifera

Musa acuminata
Spirodela polyrhiza

Zostera marina
Amborella trichocarpa

Selaginella moellendorffii copy2
Selaginella moellendorffii copy1

Physcomitrella patens
Chlamydomonas reinhardtii

Saccharomyces cerevisiae S288C
Chondrus crispus

Galdieria sulphuraria
Cyanidioschyzon merolae

Ricinus communis

MSH5MSH5

ZIP4

MER3

PTD

SHOC1 SHOC1

HEI10HEI10

PTD

MER3

ZIP4

40

20

0

60

40

20

0

60

40

20

0

60

40

20

0

60

40

20

0

60

40

20

0

60

40

20

0

1 2 3 4 5 6
5

1

6

1

1

1

1

6

6
4

1

1

3

1

2

5

1
33

6

8

7

1 2 3 4 5 6

7000 Y < ... < 1 MY

1 MY < ... < 20 MY

20 MY < ... < 50 MY

50 MY < ... < 85 MY

85 MY < ... < 125 MY

125 MY < ...

Not specifically defined

Single copy

Retained duplicate

Fractionated duplicate

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Age of retained duplicates MSH4 phylogeny in angiosperms

Fig. 1 ZMM gene copy numbers in angiosperms. a Bar charts indicating the number of angiosperms showing one to six complete copies of the genes
encoding each ZMM protein. Partial/fractionated copies are excluded. The different charts are based on a number of species ranging from 79 (MSH5) to
87 (HEI10). b Sector chart showing the age of the retained duplicates, as estimated by the age of the WGD they originate from. Only complete copies are
considered here. Duplicates generated by small scale duplications (SSD) and/or that could not be associated with a specific WGD event are indicated in
grey (i.e., age not specifically defined). c Maximum likelihood trees based on MSH4 amino acid sequences. For the sake of clarity, species names are
indicated instead of gene names. Coloured disks superimposed along the branches of the tree give the age range for past WGDs (i.e., dark orange: 7000
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fractionated copies of MSH4 in Populus trichocarpa
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dosage on crossover formation (see below). We, therefore,
focused on this gene for further analyses.

The predicted amino acid sequences of BnaA.MSH4 and BnaC.
MSH4, consolidated using B. napus meiotic RNAseq data23, both
contained canonical MutS domains including the highly con-
served C-terminal MutSac domain, which is essential for ATPase
and DNA-binding activities24 (Supplementary Fig. 9). We
identified and selected using TILLING (Supplementary Fig. 10)
one mutant allele in BnaA.MSH4 (hereinafter referred as to bnaA.
msh4-1, symbolized by A1) and two mutant alleles in BnaC.MSH4
(hereinafter referred as to bnaC.msh4-1, symbolized by C1, and
bnaC.msh4-2, symbolized by C2, respectively). These alleles were
the only ones for which the conserved MutSac domain was
disrupted by early stop codons introduced by a point-nonsense
mutation (bnaC.msh4-1) or because of splice site mutations
(bnaA.msh4-1 and bnaC.msh4-2) (Supplementary Fig. 11).

Homologous crossovers largely depend on MSH4 in B. napus.
To ensure that the identified mutations did indeed compromise
MSH4 function, we first assessed whether plants carrying only
msh4 mutant alleles (A1A1C1C1 and A1A1C2C2: Supplementary
Fig. 12) showed a severe reduction in crossover leading to the
occurrence of numerous univalents (i.e. chromosome that failed
to form crossovers) at metaphase I25,26.

We first analyzed the progression of male meiosis in WT B.
napus cv. Tanto, the accession in which msh4 mutations were
identified. Our cytological survey showed that meiosis was very
regular in cv. Tanto, like in other B. napus accessions17. During
prophase I, meiotic chromosomes condensed, recombined and
underwent synapsis, the close association of two homologous
chromosomes via the Synaptonemal Complex (SC), which was
complete at pachytene. From diakinesis to metaphase I, 19
discrete bivalents were identifiable in all cells (Fig. 2a). They
consisted of pairs of homologous chromosomes bound together
by chiasmata, the cytological manifestation of meiotic crossovers.
We estimated that 57% of the bivalents in WT were rings with
both arms bound by chiasmata while the remaining 43% were
rods with only one arm bound by chiasmata. Assuming that rod
and ring bivalents had only one and two crossovers, respectively,
we estimated a mean of 30.0 chiasmata per cell in A+A+C+C+ (n
= 28; Fig. 2, Table 1). This could be an underestimate, however,
given that it is not possible to distinguish cytologically single from
multiple crossovers clustered on a single arm. The second meiotic
division then took place and produced balanced tetrads of four
microspores (Late telophase in Fig. 2a).

In the A1A1C1C1 and A1A1C2C2 double mutants, the early
stages of prophase I were similar to those of WT B. napus cv.
Tanto (Fig. 2a). We confirmed that synapsis was complete in
these plants, as demonstrated by immunolocalization of ZYP1
protein, a major component of the central element of the SC27

(Supplementary Fig. 13). Meiotic defects became obvious at the
end of meiotic prophase when the bivalent formation was
strongly compromised in both A1A1C1C1 and A1A1C2C2 (see
metaphase I in Fig. 2a, b and Supplementary Fig. 14). We
observed a mean number of 20.4 univalents (53% of chromo-
somes) that coexisted with 8.8 bivalents in A1A1C1C1 (Table 1).
Contrary to WT, the majority of bivalents were rods (84%). At
metaphase I, the reduction in chiasmata frequency was thus very
evident, dropping down to an average of 9.9 chiasmata per cell
(Table 1). The univalents then segregated randomly, resulting in
unbalanced tetrads (See late telophase II in Fig. 2a).

To test whether the msh4 mutant alleles completely suppress
MSH4 activity, we immuno-localized HEI10 and MLH1, two
proteins that specifically mark the sites of MSH4-dependent (i.e.,
class I) crossovers at diakinesis28. We consistently counted 29 foci

for the HEI10 and MLH1 proteins (Table 1; Figs. 2, 3) in the A
+A+C+C+ plants that only carries WTMSH4 alleles but is sibling
to A1A1C1C1. By contrast, in the A1A1C1C1 and A1A1C2C2 double
mutants, the residual chiasmata observed were not marked by
HEI10 or MLH1 foci (Table 1; Fig. 2b and Supplementary
Fig. 14), suggesting the absence of class I crossovers in these
plants. This indicated that A1A1C1C1 and A1A1C2C2 were null
msh4 mutants and that bnaA.msh4-1, bnaC.msh4-1 and bnaC.
msh4-2 alleles encoded nonfunctional MSH4 proteins.

Total crossover numbers are unaffected by MSH4 copy num-
ber. To examine the functional consequences of loss of MSH4
copies, we characterized the meiotic behaviour of plants carrying
different combinations of WT and mutant alleles (Supplementary
Fig. 12). We verified beforehand that loss of one copy is not
compensated by a transcriptional upregulation of the remaining
MSH4 WT alleles, a rare but not unheard phenomenon29–31. The
relative contribution of BnaA.MSH4 and BnaC.MSH4 along with
their summed expression suggested no obvious decay or tran-
scriptional compensation between functional and mutant msh4
alleles (Supplementary Fig. 15).

We then moved on to the cytological survey of the exact same
plants. We observed that functional loss of BnaA.MSH4, the
least expressed MSH4 copy, or BnaC.MSH4, the most expressed
MSH4 copy, all resulted in a WT-like meiosis (Fig. 3; Supple-
mentary Figs. 16 and 17). The A1A1C+C+, A+A+C1C1 and A+A
+C2C2 plants all showed 19 bivalents at metaphase I (Supple-
mentary Fig. 16) and the same number of HEI10 foci as the WT
(Fig. 3; Supplementary Fig. 17). These results indicated that,
irrespective of their unequal transcriptional contribution, BnaA.
MSH4 and BnaC.MSH4 are both equally functional and able to
complement one another. We then explored the extreme situation
where BnaC.MSH4 was completely depleted while only one allele
of the BnaA.MSH4 was functional. This plant, i.e., A+A1C1C1,
carried the minimum functionalMSH4 dosage possible, with only
one functional allele of the least expressed copy (e.g., >90%
reduction in functional transcript). Despite this minimal
composition, A+A1C1C1 showed the exclusive bivalent config-
uration and about 31 HEI10 foci per meiocyte as in WT (Fig. 3;
Supplementary Figs. 16f and 17f). All these results indicated that
normal class I crossover formation is not sensitive to MSH4
duplicate loss, providing that (at least) one functional copy of
MSH4 is present in the plant.

Homoeologous crossovers are affected by MSH4 copy number.
We then focused on crossover formation between homoeologous
chromosomes in allohaploid plants produced from the two F1
hybrids (A+A1C+C1 and A+A1C+C2; Supplementary Fig. 12). As
in euploids, we first verified that there was no transcriptional
compensation between functional and mutant MSH4 alleles in
allohaploids showing varied number and assortments of WT (A+

or C+) and mutant msh4 alleles (A1, C1 or C2) (Supplementary
Fig. 15).

We then estimated that WT allohaploids (A+C+) showed on
average 6.3 chiasmata distributed over a mean number of 1 ring
and 4.4 rod bivalents (Fig. 4 and Table 1). Interestingly, we
observed a slight but significant decrease in chiasmata frequency
(compared to WT allohaploids t > 4.3, p-value < 0.0001, according
to t-test) when the least expressed copy was depleted; the mean
number of chiasmata in A1C+ plants dropped down to 5.1 cross-
overs (Fig. 4; Table 1). A stronger and significant reduction in
chiasmata was observed when the most expressed copy
was depleted, down to 2.2 chiasmata per cell in A+C1 (compared
to A1C+; t > 8.5, p-value < 0.0001, according to t-test) and
2.7 chiasmata per cell in A+C2 (compared to A1C+; t > 2.4,
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p-value < 0.02, according to t-test) allohaploids, respectively
(Fig. 4; Table 1). In these two plants, almost all bivalents were
rods and only very rare ring bivalents were observed. Finally,
when both MSH4 copies were depleted, the number of residual
chiasmata was further decreased, down to 0.7 in A1C1 (compared
to A+C1; t > 5.4, p-value < 0.0001, according to t-test) and 1.3 in
A1C2 (Fig. 4 and Table 1). Contrary to the euploids, immuno-
localization of MLH1 and HEI10 proteins could not be used to
confirm the decay of class I crossovers in all these plants. We have
previously shown that in B. napus allohaploid meiosis the two

proteins do not always co‐localize during meiosis in B. napus
allohaploid17, which makes Class I CO estimates technically
impossible. This notwithstanding, our results indicated that inter-
homoeologue class I crossover formation is sensitive to MSH4
duplicate loss (Fig. 4).

Discussion
In this paper, we have explored the possibility of dosage-driven
effects of ZMM genes32,33 in meiotic adaptation to allopolyploidy.

Tantoa b

Pachytene Pachytene

DiploteneDiplotene

Diakinesis Diakinesis

SCC3
HEI10

SCC3
MLH1

SCC3
MLH1

SCC3
HEI10

Metaphase IMetaphase I

Telophase I

Late telophase II Late telophase II

Anaphase I

A1A1C1C1 A1A1C1C1A+A+C+C+

Fig. 2 Meiotic progression and crossover formation in presence and absence of functional MSH4. a Comparative DAPI staining of wild type (B. napus cv
Tanto) and A1A1C1C1 msh4 double mutant. Different meiotic stages are illustrated: pachytene, diplotene, diakinesis metaphase I, Anaphase/telophase I, Late
anaphase II, scale bar 10 µm. b Chiasmata and immunolabeled class I COs in WT and A1A1C1C1 msh4 double mutant. The upper pictures show DAPI spreads
of metaphase I. The middle pictures show dual immunolocalization of SCC3 and HEI10 at diakinesis stage. The lower pictures show dual
immunolocalization of SCC3 and MLH1. Scale bar 10 µm

Table 1 Crossover reduction in euploid and allohaploid B. napus msh4 mutants

Genotype Number of bivalents Number of chiasmata Number of MLH1 foci Number of HEI10 foci

A+A+C+C+ 19 ± 0.0 (n= 55) 30.0 ± 2.0 (n= 28) 29.8 ± 4.9 (n= 8+ 9+ 21) 29.4 ± 2.6 (n= 47)
A1A1C1C1 8.8 ± 2.5 (n= 62+ 27) 9.9 ± 2.4 (n= 62+ 27) 0.5 ± 0.5 (n= 19) 0.6 ± 1.7 (n= 39)
A1A1C2C2 nd nd 1.6 ± 1.4 (n= 15) 0.8 ± 1.1 (n= 36)
A+C+ 5.5 ± 1.5 (n= 51+ 38+ 37) 6.3 ± 1.9 (n= 51+ 38+ 37) nd nd
A1C+ 4.8 ± 1.5 (n= 59+ 15) 5.1 ± 1.7 (n= 59+ 15) nd nd
A+C1 2.1 ± 1.3 (n= 33) 2.2 ± 1.4 (n= 33) nd nd
A+C2 2.3 ± 0.6 (n= 3) 2.7 ± 0.5 (n= 3) nd nd
A1C1 0.7 ± 1.1 (n= 51) 0.7 ± 1.1 (n= 51) nd nd
A1C2 1.3 ± 1.6 (n= 18) 1.3 ± 1.6 (n= 18) nd nd

Summary of cytological estimation of CO frequencies as estimated by MLH1 or HEI10 foci and chiasmata frequency. Data are expressed as mean ± s.d. Sample size is given as a sum when several plants
were analyzed for the same genotype
nd stands for not determined
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We first observed that acquisition of additional copies of ZMM
genes by small scale duplications, as exemplified by wheat’s
ZIP44, are exceptional events (Fig. 1; Supplementary Figs. 1–6)
and not a convergent phenomenon in plant polyploids. Rather,
we found a consistent and rapid reduction of copy number for
genes encoding MSH4, MSH5, MER3 and ZIP4 following inde-
pendent WGDs, while SHOC1 and HEI10 showed higher dupli-
cate retention rates (Fig. 1; Supplementary Figs. 1–6). HEI10 is
the only plant ZMM protein known to affect homologous
recombination in a dosage-dependent manner, with the number
of ZMM-dependent crossovers between homologous chromo-
somes increasing and decreasing with increased and decreased

HEI10 copy number, respectively33. The higher HEI10 duplicate
retention observed is therefore consistent with the most widely
accepted theory that explains the fate of gene duplicates post-
WGD and posits that selection to cope with gene dosage con-
straints contributes to prolonged duplicate retention34,35. The
same theory predicts that “gene duplicates that are not under
selection to be retained in duplicate post-WGD are lost at ran-
dom35”. MSH4 genes, which returned to singletons in all species
except the most recent polyploids (Fig. 1), may illustrate this
second trend. According to some authors, however, such a con-
sistent pattern of gene loss is unlikely to be the result of a purely
random and neutral process, but rather suggests duplicates have
negative fitness impacts and are actively selected against14,15,35.
To gain concrete insights into the consequences of MSH4
duplicate loss, we have interrogated meiosis in recent allote-
traploid B. napus when MSH4 duplicates return to single copy.

MSH4 accounts for the majority of meiotic crossovers in most
organisms, including plants25,26. We first confirmed that MSH4
plays the same role in B. napus as in other plants: though not
required for synapsis completion (Supplementary Fig. 13), MSH4
is essential to ensure normal crossover numbers between homo-
logues (Table 1; Figs. 2 and 3) and, therefore, strictly required to
ensure fertility. Most importantly, our results showed that normal
levels of homologous crossovers are robust against MSH4 gene
duplicate loss even when only one single functional allele of the
least expressed copy was present (in the A+A1C1C1plant, Fig. 3;
Supplementary Figs. 16f and 17f). Conversely, we showed that
crossover formation between homoeologous chromosomes fluc-
tuates in a dosage-sensitive manner. It is maximum when all
MSH4 copies are functional, decreases progressively with the
number of copies and approximates zero when all MSH4 copies
are not functional (Fig. 4). Together, our results suggest that
MSH4 is in excess during normal meiosis (euploids) but is rate-
limiting for allohaploid meiosis. Why does MSH4 become lim-
iting only when crossovers are formed between homoeologous
chromosomes in allohaploids? A tentative explanation is that a
greater cellular concentration of MSH4 is required to stabilize
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Fig. 4 Decreased crossovers upon MSH4 copy number reduction in B. napus allohaploids. Scatter plot showing the number of chiasmata estimated for
allohaploids carrying varying doses of functional and msh4 mutant alleles. Each genotype is illustrated below with a cytological image as example.
N.s indicates non-significant variations whereas *** indicates highly significant variations (p-value < 0.0001), according to t-test. Error bars show standard
deviation. Means (black bar) are also indicated. Scale bar 10 µm
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Fig. 3 Robustness of ZMM-dependent crossovers to MSH4 copy number
reduction in B. napus euploids. Scatter plot of HEI10 (class I crossover) foci
in the different genotypes, as determined by HEI10 immunolocalization. ***
indicates highly significant variations (p-value < 0.0001) according to
Kruskal–Wallis test. Error bars show standard deviation. Means (black bar)
are also indicated
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inherently less stable/more transient early inter-homoeologue
recombination intermediates that tend to abort before they
mature into crossovers. Future work should test this mechanistic
hypothesis.

This dispensability of MSH4 duplicates (as long as one func-
tional allele is present) shows that return of MSH4 to single copy
is unlikely to induce a selective cost in allopolyploids. Quite the
contrary, our results suggest that MSH4 duplicate loss could be
beneficial. Providing that inter-homoeologue crossover formation
in allohaploids is a good proxy for the situation in the euploids,
where both homologues and homoeologues are competing,MSH4
copy number reduction is likely to specifically reduce crossovers
between homoeologous chromosomes and thus contribute to
improved chromosome segregation. Taken alone, this observa-
tion, which is consistent with pervasive MSH4 duplicate loss,
would indicate that MSH4 is potentially a “major player” in the
meiotic adaptation of allopolyploids. However, combined with
the results from wheat (in which ZIP4 is the main actor), they
could suggest that modulation of the entire the ZMM pathway, or
at least part(s) of it, could contribute to meiotic stabilization in
allopolyploids.

It is not clear whether MSH4 and ZIP4 act on the same step of
the ZMM pathway, or even that their specific role is conserved
between species. For example, although no ZMM crossovers can
form when either MSH4 or ZIP4 are absent in Arabidopsis8,25,
rice meiosis seems to retain some residual ZMM-dependent
events in oszip4 mutant9. Likewise, the MSH4-MSH5 hetero-
dimer is thought to act upstream of ZIP4 in rice26,36, but it seems
to be the opposite in yeast37. Finally, we do not know why inter-
homoeologue crossover suppression results from MSH4 duplicate
loss in B. napus (this study) but ZIP4 duplication in wheat4.
These differences call for further investigation into the effect of
the loss/gain of individual ZMM duplicates on crossover forma-
tion between homologous and homoeologous chromosomes in
recent allopolyploids.

This notwithstanding, our results could lead to considering a
simple and general route for meiotic adaptations in allopolyploids:
i.e., through reduction in the efficiency of the ZMM pathway that
would be substantial enough to prevent inter-homoeologue
crossover formation but not to compromise the occurrence of
(at least) one crossover per homologue (i.e., the obligate cross-
over). If that is the case, then there would be no need to acquire
new meiotic function(s) to sort divergent chromosomes, as the
basic machinery would be sufficient to achieve this outcome. In
addition, beneficial variants of pre-existing meiotic of genes could
occur with greater ease, or in greater proportion, as they would be
mainly loss-of-function alleles: e.g., dominant-negative mutations
that poison ZMMmultiprotein complexes (e.g., MSH4-MSH538,39

or MSH5-ZIP437) or nonsense / missense mutations that suppress
or knock down the function of one gene. In any event, however,
our result suggest that reduced cellular availability of MSH4 is
unlikely to contribute autopolyploid meiosis stabilization, where
the challenge is to prevent multivalent formation between chro-
mosomes with little degree of differentiation. In this context,
reducing the absolute number of crossover events, rather than
improving their stringency (i.e., homologous vs homoeologous),
plays a greater role40–42. The invariability of homologous cross-
over numbers with varying MSH4 copy numbers (Fig. 3, Sup-
plementary Figs. 16 and 17) is not conducive to this process. This
difference justifies why genome scans in diploid and auto-
tetraploid Arabidopsis arenosa populations revealed that differ-
entiation (rather than duplicate loss) of structural components of
meiotic chromosomes (rather essential factors for ZMM pathway)
likely mediates autopolyploid stabilization41.

To conclude, our results not only shed new light on the
longstanding conundrum of meiotic adaptation in polyploids,

they also open fruitful avenues towards future applications. These
arise from a better understanding of the particular mechanisms
that govern recombination between differentiated chromosomes,
such as stabilization of synthetic allopolyploids43,44 or manip-
ulating recombination-associated diversity in certain hybrid
contexts45.

Methods
Copy number assessment and phylogeny construction. We first constructed an
orthologous set of ZMM homologous proteins identified from BLASTP and
TBLASTN searches against the Non-redundant protein sequences database of
NCBI, the predicted protein sequences or current genomes assemblies available in
EnsemblPlants (http://plants.ensembl.org/index.html), Plaza v4.046 (https://
bioinformatics.psb.ugent.be/plaza/), Phytozome v12 (https://phytozome.jgi.doe.
gov/pz/portal.html), MycoCosm (https://genome.jgi.doe.gov/programs/fungi/
1000fungalgenomes.jsf) and/or some other website specifically dedicated to a group
of related species (e.g. https://solgenomics.net/; https://sunflowergenome.org/). The
sources of the amino acid sequences are provided in Supplementary Data 1.

Gene trees were reconstructed using the Maximum-likelihood (ML) method
implemented in the phylogeny pipeline provided by Phylogeny.fr (http://www.
phylogeny.fr/)47. Multiple alignments were carried out with MUSCLE (full mode).
Alignment curation was implemented using GBLOCKS, allowing smaller final
blocks and gap positions within the final blocks. Phylogenetic trees were generated
using PhyML v3.0 after estimating the Gamma distribution parameters, the
proportion of invariables sites and the transition/transversion ratio. The trees were
customized and annotated using iTOL (https://itol.embl.de/).

The occurrence and age for the past WGDs were taken from refs. 1,18,19,48–52.
We used (i) collinearity information (i.e., location within conserved block) as
inferred from the WGDotplot applet of PLAZA 4.0 and/or the SynMap applet of
the CoGe platform (https://genomevolution.org/CoGe/SynMap.pl), (ii)
phylogenetic information (using a subset of related proteins) and/or (iii) Ks (i.e.,
number of synonymous substitutions per synonymous site) estimation to
determine whether a gene pair has arisen from a given WGDs10. If in doubt, the
pair of duplicates was considered as “non-assigned”.

Plant material. Brassica napus L. cv. Tanto is a double-low spring cultivar obtained
at INRA Rennes (France). This is the accession used to develop the RAPTILL EMS
population (described in ref. 53), in which we looked for mutations in BnaA.MSH4
and BnaC.MSH4.

Microspore culture was performed to isolate allohaploid plants following the
protocol detailed in ref. 54. Microspores were extracted from buds between 3.8 and
4.5 mm in length previously sterilized in bleach and suspended at a density of
100.000 microspores/mL in a modified Lichter’s medium with 0.5 mg/L
naphthaleneacetic acid, 0.05 mg N6-benzyladenine, and 13% sucrose and without
potato extract. This suspension was incubated 24 h in the dark at 4 °C and, after
centrifugation and replacement of the old medium by a fresh one, was incubated
on plates in the dark at 30 °C for 14 days during which embryo development takes
place. After this period, plates were moved to a slow gyratory shaker (60 rpm) and
incubated in the dark at 28 °C for an additional week. After this incubation, embryo
germination was induced in B5 liquid medium with 0.1 mg/L gibberellic acid and
1% sucrose incubated on a gyratory shaker (80 rpm) at 25 °C in light for 10 days.
Next, the embryos were cultivated in long day greenhouse conditions (see below)
on B5 solid medium (0.8% agar) with 0.1 mg/L gibberellic acid and 2% sucrose
until root development allowed transference of the plants to soil. Ploidy level
verification is recommended as few diploids might have been regenerated. All
plants (euploids and allohaploids) were cultivated in standard long day greenhouse
conditions (16-hour light/8-hour night photoperiod, at 22 °C day and 18 °C night).

Identification of Brassica MSH4 homologues. MSH4 homologues were identified
by querying the MSH4 coding sequence of A. thaliana (AY646927) against the
reference assemblies of B. rapa55 (http://brassicadb.org/brad/blastPage.php), B.
oleracea56 (http://plants.ensembl.org/Multi/Tools/Blast?db=core) and B.
napus16,57 (http://www.genoscope.cns.fr/blat-server/cgi-bin/colza/webBlat and
http://appliedbioinformatics.com.au/gbrowseblast/cgi-bin/index.pl). Sequence
alignments then confirmed that BnaA.MSH4/BnaA08g08260D and BnaC.
MSH4/BnaCnng35120D correspond to the two MSH4 genes isolated by previous
screening a BAC library from B. napus cv. Darmor-bzh10.

TILLING. We screened the RAPTILL EMS population following exactly the same
protocol as described in ref. 53. Briefly, we targeted a region of 1 Kb of the MutSac
domain of BnaA.MSH4 and BnaC.MSH4. We used copy-specific primers
(T_MSH4AF1, T_MSH4AR1, T_MSH4CF1 and T_MSH4CR1; Supplementary
Table 3) to amplify BnaA.MSH4 and BnaC.MSH4 separately. The resulting
amplicons span the regions between the positions 4144–5126 and 4161–5148 in the
genomic sequences of BnaA.MSH4 and BnaC.MSH4, respectively. The screens for
mutations then implemented the PMM (Plant Mutated on its Metabolites)
method58,59.
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We produced two different F1 hybrids that combined bnaA.msh4-1 (A1), the
mutant allele selected for BnaA.MSH4, with either bnaC.msh4-1 (C1) or bnaC.
msh4-2 (C2), the two mutant alleles selected for BnaC.MSH4. These F1s were self-
fertilized to produce segregating F2 progenies among which we selected plants that
contained varied number and assortments of Wild Type (A+ or C+) and mutant
msh4 alleles (A1, C1 or C2) (Supplementary Fig. 6).

Genotyping. The mutant alleles were identified using cleaved amplified poly-
morphic sequences (CAPS) assay targeting the causative EMS-SNP. The list of
primers and restriction enzymes in given in Supplementary Tables 3 and 4.

Cytological analysis. Staged anthers were isolated from fixed buds in ethanol:
acetic acid 3:1 (v/v) and used to produce meiotic spreads as described in detail in
ref. 60. Briefly, fixed anthers were firstly rinsed in 10 mM citrate buffer pH 4.5, and
incubated by 3.5 h at 37 °C in a digestion mix (0.3% cellulase, 0.3% pectolyase Y23
and 0.3% cytohelicase in citrate buffer pH 4.5). Individual digested anthers were
carefully rinsed in water and homogenized in a drop of water placed on a
microscopy glass slide. After adding 20 µL of 60% acetic acid the resulting drop was
stirred during 4 min on a hot plate at 45 °C to remove the cytoplasm of cells.
Finally, the drop was fixed by pipetting etanol:acetic acid (3:1) and allowing the
slide to dry before mounting the slide. Chiasma number was estimated on meta-
phase I spread chromosomes counterstained with 4′,6-diamidino-2-phenylindole
(DAPI) based on bivalent shape. Open “rod” bivalents were considered to contain
one single chiasma while closed ring bivalents were scored as two (one on each
arm). For the study of allohaploids, all scorings were done blindly. Spreads were
also used for immunolocalization. Raw counts of bivalent, univalent and chiasma
numbers are provided in Supplementary data 2.

Immunolocalization of meiotic proteins. Immunodetection of ASY1 and ZYP1
followed the protocol described by ref. 8 that uses fresh anthers treated with 1%
lipsol and fixed in 4% paraformaldehyde on a slide. These slides were washed in
0.1% Triton in PBS (PBS-T) and incubated with the corresponding antibodies
diluted in 1% BSA at 4 °C for 24 h. Finally, slides were washed in PBS-T were done
before mounting with DAPI plus Vectashield.

Immunodetection of MLH1, HEI10, REC8 and SCC3 proteins was performed
following the protocol described in detail in ref. 61. This protocol requires a
microwave treatment of recently fixed spreads at 850W in citrate buffer pH 6 that
ends by transferring the slides immediately to PBS-T. After this treatment slides
followed the antibody incubation and all the successive steps described for standard
immunodetection with the difference of a longer antibody incubation (48–72 h).
The anti-MLH1 and anti-HEI10 antibodies, both obtained in rabbit serum, were
used at dilution 1:200. The antibodies raised against SCC3 and REC8, from guinea
pig (GP) and rat serum, respectively, were diluted at 1:250. Anti-ASY1 and anti-
ZYP1, obtained in guinea pig (GP) and rabbit, respectively, were both used at
dilution 1:500. Secondary antibodies were Alexa488-anti-rabbit (green) and
Alexa568-anti-GP and -anti-rat (red). Raw counts of HEI10 foci are provided in
Supplementary Data 2.

Fluorescent microscopy. All images were obtained using a Zeiss AxioObserver
microscope and were analyzed by means of Zeiss Zen software and were organized
in panels with Adobe Photosoft CS3.

RNA extraction and cDNA obtention. RNA was extracted from buds selected by
size using RNeasy Mini Kit (Qiagen). One extra step of clean-up and DNAse
treatment was added to the extraction protocol. Resulting RNA was utilized for
cDNA obtention using RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific). The presence and absence of cDNA and residual genomic was assessed
using the primers Q_UBC21R1, Q_UBC21L1, Q_MSH4F1 and Q_MSH4R1
(Supplementary Table 3). Euploid and allohaploid material was sampled simulta-
neously under the same conditions.

Quantitative PCR. Three biological replicates were analyzed for every euploid
genotype, each replicate being located on a separate qPCR plate. For the alloha-
ploids, a total of five plants were used. Three of them, each representing a distinct
genotype, were distributed among three different plates. The last two plants, which
represented the same fourth genotype, were distributed on two and one plate,
respectively. Three technical replicates were used for all (euploid and allohaploid)
plants, all located onto the same plate. We used the ubiquitin gene UBC21 as a
reference to normalize the expression of the target MSH4. The primers used in
these experiments (Q_UBC21R1, Q_UBC21L1, Q_MSH4F1 and Q_MSH4R1) are
given in Supplementary Table 3. Variation of MSH4 expression level between
genotypes was assessed using an ANOVA with two fixed effects (Genotype and
Plate) and the difference in threshold cycle between MSH4 and UBC21 as the
dependent variable. Pairwise comparisons of samples after ANOVA were done
using post-ANOVA Tukey’s test (alpha= 0.05).

Pyrosequencing. For pyrosequencing, cDNA and genomic DNA was used to test
for amplification bias. The primers utilized were PS_MSH41F (5′-TGCTCAGA

TTGGCTGCTATGT-3′) as forward primer, PS_MSH4R (5′-TTCTTGTGAATA
TGCGGTCAAC-3′) as reverse primer and PS_MSH4S (5′-CAACCACACGCAT
AGT-3′) as sequencing primer. Pyrosequencing reaction was performed with
PyroMark Q24 v2.0.6 (Qiagen).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. Raw data required to produce the figures and graphs
shown in this work are provided in Supplementary Data 2.
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