159 research outputs found

    Enhanced chlorhexidine skin penetration with 1,8-cineole

    Get PDF
    BACKGROUND: Chlorhexidine (CHG) penetrates poorly into skin. The purpose of this study was to compare the depth of CHG skin permeation from solutions containing either 2% (w/v) CHG and 70% (v/v) isopropyl alcohol (IPA) or 2% (w/v) CHG, 70% (v/v) IPA and 2% (v/v) 1,8-cineole. METHODS: An ex-vivo study using Franz diffusion cells was carried out. Full thickness human skin was mounted onto the cells and a CHG solution, with or without 2% (v/v) 1,8-cineole was applied to the skin surface. After twenty-four hours the skin was sectioned horizontally in 100 μm slices to a depth of 2000 μm and the concentration of CHG in each section quantified using high performance liquid chromatography (HPLC). The data were analysed with repeated measures analysis of variance. RESULTS: The concentration of CHG in the skin on average was significantly higher (33.3% [95%, CI 1.5% - 74.9%]) when a CHG solution which contained 1,8-cineole was applied to the skin compared to a CHG solution which did not contain this terpene (P = 0.042). CONCLUSIONS: Enhanced delivery of CHG can be achieved in the presence of 1,8-cineole, which is the major component of eucalyptus oil. This may reduce the numbers of microorganisms located in the deeper layers of the skin which potentially could decrease the risk of surgical site infection

    T Cell Chemo-Vaccination Effects after Repeated Mucosal SHIV Exposures and Oral Pre-Exposure Prophylaxis

    Get PDF
    Pre-exposure prophylaxis (PrEP) with anti-viral drugs is currently in clinical trials for the prevention of HIV infection. Induction of adaptive immune responses to virus exposures during anti-viral drug administration, i.e., a “chemo-vaccination” effect, could contribute to PrEP efficacy. To study possible chemo-vaccination, we monitored humoral and cellular immune responses in nine rhesus macaques undergoing up to 14 weekly, low-dose SHIVSF162P3 rectal exposures. Six macaques concurrently received PrEP with intermittent, oral Truvada; three were no-PrEP controls. PrEP protected 4 macaques from infection. Two of the four showed evidence of chemo-vaccination, because they developed anti-SHIV CD4+ and CD8+ T cells; SHIV-specific antibodies were not detected. Control macaques showed no anti-SHIV immune responses before infection. Chemo-vaccination-induced T cell responses were robust (up to 3,940 SFU/106 PBMCs), predominantly central memory cells, short-lived (≤22 weeks), and appeared intermittently and with changing specificities. The two chemo-vaccinated macaques were virus-challenged again after 28 weeks of rest, after T cell responses had waned. One macaque was not protected from infection. The other macaque concurrently received additional PrEP. It remained uninfected and T cell responses were boosted during the additional virus exposures. In summary, we document and characterize PrEP-induced T cell chemo-vaccination. Although not protective after subsiding in one macaque, chemo-vaccination-induced T cells warrant more comprehensive analysis during peak responses for their ability to prevent or to control infections after additional exposures. Our findings highlight the importance of monitoring these responses in clinical PrEP trials and suggest that a combination of vaccines and PrEP potentially might enhance efficacy

    Why and how might genetic and phylogenetic diversity be reflected in the identification of key biodiversity areas?

    Get PDF
    ‘Key biodiversity areas' are defined as sites contributing significantly to the global persistence of biodiversity. The identification of these sites builds from existing approaches based on measures of species and ecosystem diversity and process. Here, we therefore build from the work of Sgró et al. (2011 Evol. Appl. 4, 326–337. (doi:10.1111/j.1752-4571.2010.00157.x)) to extend a framework for how components of genetic diversity might be considered in the identification of key biodiversity areas. We make three recommendations to inform the ongoing process of consolidating a key biodiversity areas standard: (i) thresholds for the threatened species criterion currently consider a site's share of a threatened species' population; expand these to include the proportion of the species' genetic diversity unique to a site; (ii) expand criterion for ‘threatened species' to consider ‘threatened taxa’ and (iii) expand the centre of endemism criterion to identify as key biodiversity areas those sites holding a threshold proportion of the compositional or phylogenetic diversity of species (within a taxonomic group) whose restricted ranges collectively define a centre of endemism. We also recommend consideration of occurrence of EDGE species (i.e. threatened phylogenetic diversity) in key biodiversity areas to prioritize species-specific conservation actions among sites

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Temporal controls on silicic acid utilisation along the West Antarctic Peninsula

    Get PDF
    The impact of climatic change along the Antarctica Peninsula has been widely debated in light of atmospheric/oceanic warming and increases in glacial melt over the past half century. Particular concern exists over the impact of these changes on marine ecosystems, not only on primary producers but also on higher trophic levels. Here we present a record detailing the historical controls on the biogeochemical cycling of silicic acid [Si(OH)4] on the west Antarctica Peninsula margin, a region in which the modern phytoplankton environment is constrained by seasonal sea-ice. We demonstrate that Si(OH)4 cycling through the Holocene alternates between being primarily regulated by sea-ice or glacial discharge from the surrounding grounded ice-sheet. With further climate-driven change and melting forecast for the 21st Century, our findings document the potential for biogeochemical cycling and multi-trophic interactions along the peninsula to be increasingly regulated by glacial discharge, altering food-web interactions

    Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags

    Get PDF
    Next-generation sequencing technology provides novel opportunities for gathering genome-scale sequence data in natural populations, laying the empirical foundation for the evolving field of population genomics. Here we conducted a genome scan of nucleotide diversity and differentiation in natural populations of threespine stickleback (Gasterosteus aculeatus). We used Illumina-sequenced RAD tags to identify and type over 45,000 single nucleotide polymorphisms (SNPs) in each of 100 individuals from two oceanic and three freshwater populations. Overall estimates of genetic diversity and differentiation among populations confirm the biogeographic hypothesis that large panmictic oceanic populations have repeatedly given rise to phenotypically divergent freshwater populations. Genomic regions exhibiting signatures of both balancing and divergent selection were remarkably consistent across multiple, independently derived populations, indicating that replicate parallel phenotypic evolution in stickleback may be occurring through extensive, parallel genetic evolution at a genome-wide scale. Some of these genomic regions co-localize with previously identified QTL for stickleback phenotypic variation identified using laboratory mapping crosses. In addition, we have identified several novel regions showing parallel differentiation across independent populations. Annotation of these regions revealed numerous genes that are candidates for stickleback phenotypic evolution and will form the basis of future genetic analyses in this and other organisms. This study represents the first high-density SNP–based genome scan of genetic diversity and differentiation for populations of threespine stickleback in the wild. These data illustrate the complementary nature of laboratory crosses and population genomic scans by confirming the adaptive significance of previously identified genomic regions, elucidating the particular evolutionary and demographic history of such regions in natural populations, and identifying new genomic regions and candidate genes of evolutionary significance

    Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort

    Get PDF
    \ua9 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Individuals with rare kidney diseases account for 5–10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure. Methods: People aged 0–96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan–Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1\ub773 m2 or more to first eGFR of less than 30 mL/min per 1\ub773 m2 (the therapeutic trial window). Findings: Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9\ub76 years (IQR 5\ub79–16\ub77). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2\ub781 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0\ub70001), but better survival rates (standardised mortality ratio 0\ub742 [95% CI 0\ub732–0\ub752]; p<0\ub70001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases. Interpretation: Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3–5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand. Funding: RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity

    Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817

    No full text
    In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz

    Shedding Light on the Galaxy Luminosity Function

    Full text link
    From as early as the 1930s, astronomers have tried to quantify the statistical nature of the evolution and large-scale structure of galaxies by studying their luminosity distribution as a function of redshift - known as the galaxy luminosity function (LF). Accurately constructing the LF remains a popular and yet tricky pursuit in modern observational cosmology where the presence of observational selection effects due to e.g. detection thresholds in apparent magnitude, colour, surface brightness or some combination thereof can render any given galaxy survey incomplete and thus introduce bias into the LF. Over the last seventy years there have been numerous sophisticated statistical approaches devised to tackle these issues; all have advantages -- but not one is perfect. This review takes a broad historical look at the key statistical tools that have been developed over this period, discussing their relative merits and highlighting any significant extensions and modifications. In addition, the more generalised methods that have emerged within the last few years are examined. These methods propose a more rigorous statistical framework within which to determine the LF compared to some of the more traditional methods. I also look at how photometric redshift estimations are being incorporated into the LF methodology as well as considering the construction of bivariate LFs. Finally, I review the ongoing development of completeness estimators which test some of the fundamental assumptions going into LF estimators and can be powerful probes of any residual systematic effects inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy & Astrophysics Review. This version: bring in line with A&AR format requirements, also minor typo corrections made, additional citations and higher rez images adde
    corecore