136 research outputs found

    Earth-based render of tabique walls – an experimental work contribution

    Get PDF
    A research work focused on studying earth render for tabique application purposes is presented. Initially, a brief description of the tabique building technique is provided. The relevance of the application of this traditional building technique is also highlighted. Different compositions of earth render are experimentally analysed and the respective performance is evaluated. Flexural and compressive strengths, workability, drying shrinkage cracking and water resistance are the material properties assessed. A simple earth render is selected as being adequate for tabique building applications and it is applied on the manufacturing of a tabique wall sample. This wall sample is monitored in terms of thermal insulation ability and its thermal transmission coefficient is estimated. Taking into account that there is still a lack of published technical information related to this topic, this paper may contribute to solve this limitation and to give some guidance in future repairing processes of tabique construction. The technological benefit of adding lime or cement with earth is researched. Real tabique timber structure samples are applied in order to validate the obtained experimental results.info:eu-repo/semantics/publishedVersio

    Influence of slag composition on the stability of steel in alkali-activated cementitious materials

    Get PDF
    Among the minor elements found in metallurgical slags, sulfur and manganese can potentially influence the corrosion process of steel embedded in alkali-activated slag cements, as both are redox-sensitive. Particularly, it is possible that these could significantly influence the corrosion process of the steel. Two types of alkali-activated slag mortars were prepared in this study: 100% blast furnace slag and a modified slag blend (90% blast furnace slag? 10% silicomanganese slag), both activated with sodium silicate. These mortars were designed with the aim of determining the influence of varying the redox potential on the stability of steel passivation under exposure to alkaline and alkaline chloride-rich solutions. Both types of mortars presented highly negative corrosion potentials and high current density values in the presence of chloride. The steel bars extracted from mortar samples after exposure do not show evident pits or corrosion product layers, indicating that the presence of sulfides reduces the redox potential of the pore solution of slag mortars, but enables the steel to remain in an apparently passive state. The presence of a high amount of MnO in the slag does not significantly affect the corrosion process of steel under the conditions tested. Mass transport through the mortar to the metal is impeded with increasing exposure time; this is associated with refinement of the pore network as the slag continued to react while the samples were immersed

    Properties of eco-friendly cement mortar contained recycled materials from different sources

    Get PDF
    Building materials such as sand, cement, bricks, and steel are usually the main components of the construction sector. All these materials are produced from existing natural resources and they will cause substantial damage to the environment as a result of their continuous depletion. Moreover, during the manufacture of various building materials, especially cement, a high concentration of carbon dioxide is constantly emitted into the atmosphere. Therefore, to reduce this environmental damage as well as to save natural resources, this study was performed to recycle the wastes of some of building materials such as marble, granite and porcelain tiles and clay brick through using them as cement and aggregate replacement materials in cement mortar. Sixteen mixtures were cast for this study. In addition to the control, the mortar mixes were divided into five groups, three mixes in each group. In four of the five groups, cement was replaced in three proportions (5%, 10%, 15% by weight) with each of marble, granite, porcelain and clay brick waste powders (passing through 150-ÎĽm sieve). The fifth group included 100% replacing (by weight) of the natural sand with the marble, granite and porcelain tiles wastes (with a comparable gradation). The influence of these wastes on flow rate, compressive strength, flexural strength, bulk density, ultrasonic pulse velocity (UPV) and water absorption tests were observed. Results showed that it is possible to produce an eco-friendly mortar made with 100% recycled marble or porcelain aggregate with a significant improvement in the mechanical and durability properties in comparison with natural aggregate mortar
    • …
    corecore