24 research outputs found

    Spectrum of HLA associations: the case of medically refractory pediatric acute lymphoblastic leukemia

    Get PDF
    Although studies of HLA and disease now date back some 50 years, a principled understanding of that relationship has been slow to emerge. Here, we examine the associations of three HLA loci with medically refractory pediatric acute lymphoblastic leukemia (pALL) patients in a case–control study involving 2,438 cases and 41,750 controls. An analysis of alleles from the class I loci, HLA-A and HLA-B, and the class II locus DRB1 illuminates a spectrum of extremely significant allelic associations conferring both predisposition and protection. Genotypes constructed from predisposing, protective, and neutral allelic categories point to an additive mode of disease causation. For all three loci, genotypes homozygous for predisposing alleles are at highest disease risk while the favorable effect of homozygous protective genotypes is less striking. Analysis of A–B and B–DRB1 haplotypes reveals locus-specific differences in disease effects, while that all three loci influence pALL; the influence of HLA-B is greater than that of HLA-A, and the predisposing effect of DRB1 exceeds that of HLA-B. We propose that the continuum in disease susceptibility suggests a system in which many alleles take part in disease predisposition based on differences in binding affinity to one or a few peptides of exogenous origin. This work provides evidence that an immune response mediated by alleles from several HLA loci plays a critical role in the pathogenesis of pALL, adding to the numerous studies pointing to a role for an infectious origin in pALL

    Defining the Role of the MHC in Autoimmunity: A Review and Pooled Analysis

    Get PDF
    The major histocompatibility complex (MHC) is one of the most extensively studied regions in the human genome because of the association of variants at this locus with autoimmune, infectious, and inflammatory diseases. However, identification of causal variants within the MHC for the majority of these diseases has remained difficult due to the great variability and extensive linkage disequilibrium (LD) that exists among alleles throughout this locus, coupled with inadequate study design whereby only a limited subset of about 20 from a total of approximately 250 genes have been studied in small cohorts of predominantly European origin. We have performed a review and pooled analysis of the past 30 years of research on the role of the MHC in six genetically complex disease traits – multiple sclerosis (MS), type 1 diabetes (T1D), systemic lupus erythematosus (SLE), ulcerative colitis (UC), Crohn's disease (CD), and rheumatoid arthritis (RA) – in order to consolidate and evaluate the current literature regarding MHC genetics in these common autoimmune and inflammatory diseases. We corroborate established MHC disease associations and identify predisposing variants that previously have not been appreciated. Furthermore, we find a number of interesting commonalities and differences across diseases that implicate both general and disease-specific pathogenetic mechanisms in autoimmunity

    Common genetic variation and the control of HIV-1 in humans

    Get PDF
    To extend the understanding of host genetic determinants of HIV-1 control, we performed a genome-wide association study in a cohort of 2,554 infected Caucasian subjects. The study was powered to detect common genetic variants explaining down to 1.3% of the variability in viral load at set point. We provide overwhelming confirmation of three associations previously reported in a genome-wide study and show further independent effects of both common and rare variants in the Major Histocompatibility Complex region (MHC). We also examined the polymorphisms reported in previous candidate gene studies and fail to support a role for any variant outside of the MHC or the chemokine receptor cluster on chromosome 3. In addition, we evaluated functional variants, copy-number polymorphisms, epistatic interactions, and biological pathways. This study thus represents a comprehensive assessment of common human genetic variation in HIV-1 control in Caucasians

    Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia

    No full text
    Survival for patients with acute myeloid leukemia (AML) is limited by treatment-related mortality (TRM) and relapse after unrelated donor (URD) hematopoietic cell transplantation (HCT). Natural killer (NK)–cell alloreactivity, determined by donor killer-cell immunoglobulin-like receptors (KIRs) and recipient HLA, correlates with successful HCT for AML. Hypothesizing that donor KIR genotype (A/A: 2 A KIR haplotypes; B/x: at least 1 B haplotype) would affect outcomes, we genotyped donors and recipients from 209 HLA-matched and 239 mismatched T-replete URD transplantations for AML. Three-year overall survival was significantly higher after transplantation from a KIR B/x donor (31% [95% CI: 26-36] vs 20% [95% CI: 13-27]; P = .007). Multivariate analysis demonstrated a 30% improvement in the relative risk of relapse-free survival with B/x donors compared with A/A donors (RR: 0.70 [95% CI: 0.55-0.88]; P = .002). B/x donors were associated with a higher incidence of chronic graft-versus-host disease (GVHD; RR: 1.51 [95% CI: 1.01-2.18]; P = .03), but not of acute GVHD, relapse, or TRM. This analysis demonstrates that unrelated donors with KIR B haplotypes confer significant survival benefit to patients undergoing T-replete HCT for AML. KIR genotyping of prospective donors, in addition to HLA typing, should be performed to identify HLA-matched donors with B KIR haplotypes
    corecore