174 research outputs found

    Does Research Reduce Poverty? Assessing the Impacts of Policy?oriented Research in Agriculture

    Get PDF
    In the current context of the global financial crisis and its aftermath, development resources are likely to be getting scarcer. Resources for development research are too. The set of circumstances generating the resource scarcity is also putting pressure on development gains. More than ever before, every dollar spent on development will have to count towards sustainable poverty reduction, as will every dollar spent on development research. In light of this context this article asks what do we know about the welfare impacts of research in agriculture

    Drosophila Evolution over Space and Time (DEST): A New Population Genomics Resource

    Get PDF
    Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.We thank four reviewers and the handling editor for helpful comments on previous versions of our manuscript. We are grateful to the members of the DrosEU and DrosRTEC consortia for their long-standing support, collaboration, and for discussion. DrosEU was funded by a Special Topic Networks (STN) grant from the European Society for Evolutionary Biology (ESEB). M.K. was supported by the Austrian Science Foundation (grant no. FWF P32275); J.G. by the European Research Council (ERC) under the European Unionā€™s Horizon 2020 research and innovation programme (H2020-ERC-2014-CoG-647900) and by the Spanish Ministry of Science and Innovation (BFU-2011-24397); T.F. by the Swiss National Science Foundation (SNSF grants PP00P3_133641, PP00P3_165836, and 31003A_182262) and a Mercator Fellowship from the German Research Foundation (DFG), held as a EvoPAD Visiting Professor at the Institute for Evolution and Biodiversity, University of MĆ¼nster; AOB by the National Institutes of Health (R35 GM119686); M.K. by Academy of Finland grant 322980; V.L. by Danish Natural Science Research Council (FNU) (grant no. 4002-00113B); FS Deutsche Forschungsgemeinschaft (DFG) (grant no. STA1154/4-1), Project 408908608; J.P. by the Deutsche Forschungsgemeinschaft Projects 274388701 and 347368302; A.U. by FPI fellowship (BES-2012-052999); ET Israel Science Foundation (ISF) (grant no. 1737/17); M.S.V., M.S.R. and M.J. by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200178); A.P., K.E. and M.T. by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200007); and TM NSERC grant RGPIN-2018-05551. The authors acknowledge Research Computing at The University of Virginia for providing computational resources and technical support that have contributed to the results reported within this publication (https://rc.virginia.edu, last accessed September 6, 2021)

    Stunting in Infancy Is Associated with Decreased Risk of High Body Mass Index for Age at 8 and 12 Years of Age123

    Get PDF
    Background: Effects of early-life stunting on adiposity development later in childhood are not well understood, specifically with respect to age in the onset of overweight and obesity. Objectives: We analyzed associations of infant stunting with prevalence of, incidence of, and reversion from high body mass indexā€“for-age z score (BMIZ) later in life. We then estimated whether associations of infant stunting with BMIZ varied by sex, indigenous status, and rural or urban residence. Methods: Data were collected from 1942 Peruvian children in the Young Lives cohort study at ages 1, 5, 8, and 12 y. Multivariable generalized linear models estimated associations of stunting (height-for-age z score 1 and BMIZ > 2 prevalence, incidence (moving above a BMIZ threshold between ages), and reversion (moving below a BMIZ threshold between ages) at later ages. Results: After adjustment for covariates, stunting at age 1 y was associated with a lower prevalence of BMIZ > 1 at age 8 y (RR: 0.81; 95% CI: 0.66, 1.00; P = 0.049) and 12 y (RR: 0.75; 95% CI: 0.61, 0.91; P = 0.004), as well as a lower prevalence of BMIZ > 2 at age 8 y. Stunting was not associated with incident risk of BMIZ > 1 or BMIZ > 2. Stunting was positively associated at age 5 y with risk of reversion from BMIZ > 1 (RR: 1.22; 95% CI: 1.05, 1.42; P = 0.008) and BMIZ > 2. We found evidence that the association of stunting with prevalent and incident BMIZ > 1 was stronger for urban children at ages 5 and 8 y, and for nonindigenous children at age 8 y. Conclusions: Stunting predicted a lower risk of prevalent BMIZ > 1 and BMIZ > 2, even after controlling for potential confounders. This finding may be driven in part by a higher risk of reversion from BMIZ > 1 by age 5 y. Our results contribute to an understanding of how nutritional stunting in infancy is associated with BMIZ later in life
    • ā€¦
    corecore