
Stunting in Infancy Is Associated with
Decreased Risk of High Body Mass Index

for Age at 8 and 12 Years of Age123
The Harvard community has made this

article openly available.  Please share  how
this access benefits you. Your story matters

Citation Andersen, Christopher T, Aryeh D Stein, Sarah A Reynolds, Jere R
Behrman, Benjamin T Crookston, Kirk A Dearden, Mary E Penny,
Whitney Schott, and Lia CH Fernald. 2016. “Stunting in Infancy Is
Associated with Decreased Risk of High Body Mass Index for Age
at 8 and 12 Years of Age123.” The Journal of Nutrition 146 (11):
2296-2303. doi:10.3945/jn.116.234633. http://dx.doi.org/10.3945/
jn.116.234633.

Published Version doi:10.3945/jn.116.234633

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29626161

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/154877551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Stunting%20in%20Infancy%20Is%20Associated%20with%20Decreased%20Risk%20of%20High%20Body%20Mass%20Index%20for%20Age%20at%208%20and%2012%20Years%20of%20Age123&community=1/4454687&collection=1/4454688&owningCollection1/4454688&harvardAuthors=b17fa6fa86e39eacab423d2c36cff1d9&department
http://nrs.harvard.edu/urn-3:HUL.InstRepos:29626161
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


The Journal of Nutrition

Nutritional Epidemiology

Stunting in Infancy Is Associated with
Decreased Risk of High Body Mass Index for
Age at 8 and 12 Years of Age1–3

Christopher T Andersen,4,6* Aryeh D Stein,7 Sarah A Reynolds,5 Jere R Behrman,8–10

Benjamin T Crookston,11 Kirk A Dearden,12 Mary E Penny,13 Whitney Schott,10 and Lia CH Fernald5

4Division of Epidemiology and 5Division of Community Health and Human Development, School of Public Health, University of

California, Berkeley, CA; 6Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA; 7Hubert Department

of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA; 8Department of Economics, 9Department of

Sociology, and 10Population Studies Center, University of Pennsylvania, Philadelphia, PA; 11Department of Health Science, Brigham

Young University, Provo, UT; 12IMAWorld Health, Dar es Salaam, Tanzania; and 13Nutrition Research Institute, Lima, Peru

Abstract

Background: Effects of early-life stunting on adiposity development later in childhood are not well understood, specifically

with respect to age in the onset of overweight and obesity.

Objectives: We analyzed associations of infant stunting with prevalence of, incidence of, and reversion from high body

mass index–for-age z score (BMIZ) later in life. We then estimated whether associations of infant stunting with BMIZ

varied by sex, indigenous status, and rural or urban residence.

Methods: Data were collected from 1942 Peruvian children in the Young Lives cohort study at ages 1, 5, 8, and 12 y.

Multivariable generalized linear models estimated associations of stunting (height-for-age z score <22) at age 1 y with risk

of BMIZ > 1 and BMIZ > 2 prevalence, incidence (moving above a BMIZ threshold between ages), and reversion (moving

below a BMIZ threshold between ages) at later ages.

Results: After adjustment for covariates, stunting at age 1 y was associated with a lower prevalence of BMIZ > 1 at age 8 y (RR:

0.81; 95%CI: 0.66, 1.00; P= 0.049) and 12 y (RR: 0.75; 95%CI: 0.61, 0.91; P= 0.004), aswell as a lower prevalence of BMIZ > 2

at age 8 y. Stunting was not associated with incident risk of BMIZ > 1 or BMIZ > 2. Stunting was positively associated at age 5 y

with risk of reversion from BMIZ > 1 (RR: 1.22; 95% CI: 1.05, 1.42; P = 0.008) and BMIZ > 2. We found evidence that the

association of stunting with prevalent and incident BMIZ > 1 was stronger for urban children at ages 5 and 8 y, and for

nonindigenous children at age 8 y.

Conclusions: Stunting predicted a lower risk of prevalent BMIZ > 1 and BMIZ > 2, even after controlling for potential

confounders. This findingmay be driven in part by a higher risk of reversion from BMIZ > 1 by age 5 y. Our results contribute to

an understanding of how nutritional stunting in infancy is associated with BMIZ later in life. J Nutr 2016;146:2296–303.

Keywords: body mass index, stunting, children, cohort study, Peru

Introduction

Overweight in children and adolescents is a public health
problem in both high-income and low- and middle-income

countries (LMICs)14. In Latin America, 7.1% of children aged
<5 y have a weight-for-height z score > 2 (1, 2), and 29–34%
of children aged 5–11 y have a body mass index–for-age
z score (BMIZ) > 1 (3, 4). Overweight or obese children
are more likely to be overweight or obese as adults (5),
thereby increasing their risk of noncommunicable chronic
diseases (6).
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Stunting prevalence [height-for-age z score (HAZ) <22] (2)
in children <5 y of age in LMICs has declined in recent decades,
but 5.9 million children <5 y old (11.6%) were stunted in Latin
America and the Caribbean in 2015 (7). Stunting increases
mortality risk from infectious diseases during childhood (8),
impairs cognitive development (9), and is associated with poorer
educational and economic outcomes in adolescence and adult-
hood (10).

As LMICs undergo demographic, economic, and nutritional
transitions, a dual burden of overweight and stunting can occur.
A greater prevalence of overweight in stunted children has been
reported in cross-sectional studies (11, 12). These findings are
not consistent with prospective studies that have found that
stunting in early childhood is associated with decreased BMI
or body fat in childhood (13, 14), adolescence (15–17), and
adulthood (18), and other prospective studies have found null
associations (17, 19, 20). To our knowledge, few studies have
measured outcomes at >1 follow-up age (13, 14, 17), and none
have considered age-specific patterns of overweight incidence
and reversion.

In this study we analyzed associations of stunting at age 1 y
with the prevalence of, incidence of, and reversion from high
BMIZ at ages 5, 8, and 12 y in Peruvian children. Recently, Peru
experienced rapid economic growth; it is now in the midst of
a nutritional transition. In 2011, the stunting prevalence in
children <5 y of age was 19.3%; in 2000, it was 31.4% (21).
In 2011, the prevalence of weight-for-height z score > 2 (2)
in children <5 y of age was 8.8%. In children ages 6–9 y, BMI-
for-age$85th percentile (4) was 21.5% in 2009–2010 (22). The
high prevalence of these 2 conditions makes Peru an opportune
setting for analyzing associations between early stunting and
later overweight and obesity.

Methods

Data source.We analyzed data from Peruvian children in the prospective
Young Lives cohort study (23). In 2002, 2052 children aged ;6–18 mo

were recruited (round 1). Follow-up data were collected in 2006 when

children were ;5 y old (round 2), in 2009 when children were ;8 y old

(round 3), and in 2013 when children were ;12 y old (round 4). To
simplify reference to each of these rounds of data collection, we will refer

to them as ages 1, 5, 8, and 12 y.

Participants were selected through a multistage sampling process.
Ten random draws of 20 sentinel sites were conducted from among the

1818 districts in Peru. Consistent with the study�s pro-poor focus, the

wealthiest 5% of districts were excluded. From these random draws, one

set of 20 sites was selected that best met the study aims of diverse
coverage and logistical feasibility. Within selected districts, an initial

community was randomly selected as the starting point for recruitment

of age-eligible children. Full details of participant recruitment are

available elsewhere (24).

Anthropometric variables. Weight and length at age 1 y were mea-

sured by 6 supervisors who used calibrated digital balances (Soehnle)
with 100-g precision and locally made rigid stadiometers with 1-mm

precision. At later ages, measurements were taken by all field staff with

the use of similar digital platform balances (with 100-g precision), and

standing height was measured with the use of locally made instruments
accurate to 1 mm. The staff followed standard WHO procedures for

measurement of weight, length, and height. To ensure inter- and

intrarater reliability, standard measurement procedures were described

in the training manual, and repeat measurements were conducted to
ensure accuracy (25). HAZ and BMIZ were calculated according to age-

appropriate WHO references (2, 4).

Our predictor of interest was stunting at age 1 y, defined as HAZ

<22. In this sample, HAZ during round 1 was inversely correlated with

age in months (26), so children recruited at a younger age were less

likely to be classified as stunted. We therefore adjusted all round

1 HAZ measurements to their predicted value at age 12 mo. Applying

methodology described elsewhere (26), we calculated the difference

between each child�s HAZ and the meanHAZ for children within61mo

of the child�s age. This value was then added to the mean HAZ for

children aged 11–13 mo.
Outcomes included the prevalence of, incidence of, and reversion

from high BMIZ, with the use of thresholds of BMIZ > 1 and BMIZ > 2.

TheWHO defines overweight and obesity differently for children <5 y of

age and those 5–19 y. For children <5 y of age, overweight (including

obesity) is defined as BMIZ > 2 and obesity is defined as BMIZ > 3 (2),

whereas for children aged 5–19 y, overweight is defined as BMIZ > 1 and

obesity is BMIZ > 2 (4). If we adhered to these definitions, children could

be considered to develop overweight or obesity without any change in

BMIZ. Therefore, for all ages, we consistently defined overweight as

BMIZ > 1 and obesity as BMIZ > 2. To maintain clarity, we refer to the

exact cutoffs used, rather than the terms overweight and obesity, when

referring to the results from this analysis.

If a child was above a given BMIZ threshold (i.e., BMIZ > 1 or

BMIZ > 2) for the ith round, they were defined as a prevalent case for
that threshold in the ith round. If a child was above the threshold at the

ith round but below the threshold in the ith2 1 round, then we defined

that child as an incident case for that threshold at the ith round. If a
child was below the threshold at the ith round but was above the

threshold in the ith 2 1 round, then we defined that child as reverted

from that threshold at the ith round. These transitions are illustrated

graphically for the analyzed sample in Figure 1.

Covariates. Covariates were selected for the model on the basis of the

causal pathway structure supported by the literature, as well as the data

available from the Young Lives study. The statistical significance of a

covariate was not a criterion for inclusion in the model, although all

covariates were significantly associated with stunting status at age 1 y

(Table 1). We adjusted for covariates at the child, mother, and household

level. At the child level, we adjusted for sex. Child age was not included

because it was already adjusted through the BMIZ measure and the

adjustment to HAZ in round 1. There was no association between age

and BMIZ in any later round. We did not adjust for breastfeeding status

because nearly all children (97.7%) had been breastfed for $6 mo. We

also did not adjust for birth weight because we were interested in

stunting at age 1 y as an indicator of chronic malnutrition.

Maternal covariates included height and BMI in round 1. Maternal
BMI was categorized into 3 mutually exclusive categories: normal [BMI

(in kg/m2) <25], overweight (BMI $25 and <30) and obese (BMI $30).

There were too few underweight women (BMI <18.5; 1.6%) to include

in a separate category, so they were included in the normal BMI category.

Mothers whose first language was not Spanish (defined by the language

the grandmother spoke to the mother) were classified as indigenous. We

also included a binary indicator of whether the mother had completed

primary education ($6 grades of schooling).

Household characteristics included indicators of whether households

had$6 members or were in rural areas, and geographic regions (coastal,

jungle, or mountain). Household wealth was measured with the use of

the Young Lives wealth index, which is the mean of 3 composite scores

for housing quality, consumer durables, and service access. A detailed

description of the wealth index is published elsewhere (24). Wealth was

split into nominal quintile indicators for the statistical analysis.

Sample size, exclusions, and multiple imputation. Of the 2052
children initially recruited, 23 were excluded because their ages at

recruitment were outside the target range of 6–17 mo. Twenty children were

excluded because of documented deaths after baseline, 45 children because

of missing HAZ or BMIZ at age 1 y, 11 children because of improbable

anthropometric z scores (HAZ <25 or HAZ >3 or BMIZ <24 or BMIZ >5)

(27) during any round, and 11 children because of missing covariate

data at age 1 y. This resulted in a sample of 1942 children with complete

data at baseline. An additional 187 children were missing BMIZ data at

age 5, 8, or 12 y, resulting in 1755 cases with complete follow-up data

for analysis.

Infant stunting and subsequent high BMIZ 2297



Details on baseline characteristics of subjects with and without

missing follow-up BMIZ data are found in Supplemental Table 1. We

observed that missingness was associated with some observed covariates,

indicating that a complete case analysis might result in biased estimates.
To account for potential selection bias (under the assumption of missing

at random), we conducted multiple imputation with the use of chained

equations to impute missing values of BMIZ (28). Thirty imputations for

each missing value were performed (28). Linear regression was used in
the multiple imputation procedure to impute predicted values for missing

BMIZ at ages 5, 8, and 12 y. All covariates from the main analysis,

baseline outcomes, and an indicator variable for the sampling cluster
were included in the imputation models.

Statistical analysis. We stratified the data on stunted status at age 1 y

and calculated descriptive statistics. We tested differences in covariate
values between stunted and nonstunted children at age 1 y, and between

those lost to follow-up and those not lost to follow-up, with the use of

Fisher�s exact test, Pearson�s chi-square test, and Student�s t test. We used

generalized linear models with a Poisson distribution, log link, and
robust variance (29) to estimate the association between stunting status

at age 1 y and the risk of subsequent prevalence of, incidence of, and

reversion from BMIZ > 1 or BMIZ > 2. Results from 3 models are

reported: 1) bivariable regressions of outcomes on stunting at age 1 y; 2)
multivariable regressions with controls for potentially confounding
covariates with the use of observations with complete outcome data at

all ages; and 3) multivariable regressions adjusted for the same covariates

as in the second model, but with imputations for missing outcomes. In

regressions of incidence and reversion on stunting status in model 3, the
population at risk varied across imputed data sets. To permit analysis, we

set the at-risk population across imputed data sets by using mean

imputed values for BMIZ at age 5 y and age 8 y to determine whether

children were at risk of incidence or reversion at ages 8 and 12 y,
respectively. We examined, one interaction at a time, the significance of

multiplicative interaction terms between stunting status at age 1 y and

sex, indigenous status, and rural or urban status. Statistical significance
was considered to be P < 0.05. Statistical analyses were conducted with

the use of Stata version 13.

Ethics. Ethics committees at the University of Oxford and the Nutrition
Research Institute in Lima approved the Peruvian Young Lives study.

Parents provided written informed consent in round 1 and verbal

reconsent in each subsequent round.

Results

Over one-quarter of children (27.5%) were stunted at 1 y of age
(Table 1). There were large differences between stunted and
nonstunted children. The mean HAZ in the stunted group was 2
SDs below that of the nonstunted group. Stunted children were
more likely to be male. The mothers of stunted children were
shorter, more likely to be indigenous, and less likely to be
overweight or to have completed primary education. Stunted
children were more likely to live in rural and mountainous
regions and were from poorer households. The median age of
children in the sample in round 1 was 12 mo (IQR: 8–15 mo).

The prevalence of, incidence of, and reversion fromBMIZ > 1 in
the sample of children with complete follow-up data (n = 1755)
from 1 to 12 y of age are illustrated in Figure 1. The prevalence of
BMI > 1 decreased from 41.7% at age 1 y to 27.4% at age 8 y, but
then increased to 32.0% at age 12 y. The incidence of BMIZ > 1 at
age 5 y fell from 21.0% of at-risk children (n = 1023) to;15% at
ages 8 and 12 y. Reversion between ages 1 and 5 y was high
(54.0%), but was lower in subsequent periods. Kernel densities of
the distributions of BMIZ by age, separately for stunted and
nonstunted children, are presented in Figure 2. The central
tendency of the nonstunted distribution did not shift substantially
across ages. Distributions for stunted children shifted leftward and
became tighter between age 1 y and age 12 y.

The prevalence of BMIZ > 1 was highest in both groups at
age 1 y (Table 2). By age 5 y, the prevalence of BMIZ > 1 had
decreased by >10 percentage points for both groups. At ages 8
and 12 y, the prevalence of BMIZ > 1 of stunted children was
approximately one-half that of nonstunted children. Incident
BMIZ > 1 was similar for both groups at age 5 y, but stunted

TABLE 1 Characteristics of stunted and nonstunted Peruvian
children at age 1 y in the Young Lives cohort study1

Not stunted
(n = 1407)

Stunted
(n = 535) P2

Child characteristics

HAZ 20.76 6 0.84 22.76 6 0.63 ,0.001

Female 52.4 44.3 0.002

Maternal characteristics

Height, cm 150.9 6 5.3 147.7 6 5 ,0.001

BMI, kg/m2 ,0.001

Normal weight (BMI ,25) 56.7 68.8

Overweight (BMI $25 and ,30) 33.3 25.0

Obese (BMI $30) 10.0 6.2

Indigenous 23.5 50.8 ,0.001

Completed primary education 77.9 50.3 ,0.001

Household characteristics

$6 household members 44.6 49.9 0.037

Rural 25.2 53.8 ,0.001

Region ,0.001

Coastal 43.1 13.8

Mountain 42.1 71.4

Jungle 14.9 14.8

Wealth index ,0.001

Quintile 1 (lowest) 15.4 30.3

Quintile 2 16.8 28.0

Quintile 3 20.0 21.5

Quintile 4 23.5 10.8

Quintile 5 (highest) 24.2 9.3

1 Values are means 6 SDs or percentages. HAZ, height-for-age z score.
2 Student�s t test, Fisher�s exact test, or Pearson�s chi-square test.

FIGURE 1 Transitions across BMIZ . 1 threshold in Peruvian children in the Young Lives cohort at ages 1, 5, 8, and 12 y (n = 1755). Incidence

refers to a transition from BMIZ# 1 at a given age to a BMIZ. 1 at the next age. Reversion refers to a transition from BMIZ. 1 at a given age to

a BMIZ # 1 at the next age. BMIZ, body mass index–for-age z score.
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children had a lower incidence through ages 8 and 12 y.
Reversion was higher for stunted children at ages 5, 8, and 12 y.
Similar trends were observed for prevalence of, incidence of, and
reversion from BMIZ > 2.

Unadjusted estimates (model 1) show that stunting status at
age 1 y was significantly associated with a lower prevalence of
BMIZ > 1 at ages 8 and 12 y, and a lower prevalence of BMIZ > 2
at ages 5, 8, and 12 y (Table 3). The RR estimates for stunting
and prevalent BMIZ > 1 moved further from the null across study
rounds, indicating a strengthening association across time. After
adjustment for covariates in the sample with complete follow-up
data (model 2), magnitudes of associations were reduced. How-
ever, there were still statistically significant inverse associations
between stunting at age 1 y and prevalent BMIZ > 1 at ages 8 and
12 y. Models that used imputed missing outcome data (model 3)
provided similar results.

Stunting at 1 y of age was inversely associated with incident
BMIZ > 1 and incident BMIZ > 2 at ages 8 and 12 y, but not
at age 5 y (model 1). However, models 2 and 3 found null
associations.

Stunting at age 1 y was positively associated with reversion
from BMIZ > 1 at ages 5, 8, and 12 y, and was positively
associated with reversion from BMIZ > 2 at ages 5 and 8 y
(model 1). In models 2 and 3, we found that stunting at age 1 y
was positively associated with reversion from BMIZ > 1 and
BMIZ > 2 at age 5 y, but was not significantly associated with
reversion for either threshold at ages 8 and 12 y.

Significant interactions by rural compared with urban status
existed for prevalence and incidence outcomes at ages 5 and 8 y,
and for indigenous status at age 8 y (Table 4). There were no

other statistically significant interaction terms. For the signifi-
cant interactions, point estimates for the RR were <1 for urban
and nonindigenous children, and >1 for rural and indigenous
children. However, although there were significant interactions,
several of the stratum-specific estimates were not significantly
different from 1.

Discussion

This study found that 4 of 10 Peruvian children had a BMIZ> 1 at
age 1 y. As children aged, the prevalence of BMIZ > 1 and
BMIZ > 2 decreased in both stunted and nonstunted (at age 1 y)
children, with greater reductions in stunted children. This
difference cannot be fully explained by controlling for potential
confounders at ages 8 and 12 y. On the other hand, in bivariate
analyses, early stunting was associated with a reduced inci-
dence of BMIZ > 1 and BMIZ > 2 at ages 8 and 12 y, but these
differences disappeared with adjustment. Decreases in preva-
lent high weight partially appeared to be due to significantly
greater reversion associated with stunting at age 5 y. There is

FIGURE 2 Longitudinal changes in body mass index–for-age distri-

bution in Peruvian children in the Young Lives cohort, stratified by

stunted (A) and nonstunted (B) status at age 1 y.

TABLE 2 Anthropometric measurement outcomes in Peruvian
children from the Young Lives cohort with complete follow-up
data1

Not stunted at age 1 y Stunted at age 1 y

At risk, n
With

outcome, % At risk, n
With

outcome, % P2

BMIZ . 1

Prevalence3

Age 1 y 1285 43.1 470 37.9 0.05

Age 5 y 1285 32.9 470 27.4 0.03

Age 8 y 1285 31.0 470 17.4 ,0.01

Age 12 y 1285 37.4 470 17.0 ,0.01

Incidence4

Age 5 y 731 20.2 292 22.9 0.35

Age 8 y 862 16.8 341 10.0 ,0.01

Age 12 y 887 18.6 388 9.5 ,0.01

Reversion5

Age 5 y 554 50.4 178 65.2 ,0.01

Age 8 y 423 40.2 129 62.8 ,0.01

Age 12 y 398 20.6 82 47.6 ,0.01

BMIZ . 2

Prevalence3

Age 1 y 1285 13.1 470 11.7 0.47

Age 5 y 1285 8.2 470 4.0 ,0.01

Age 8 y 1285 10.0 470 2.3 ,0.01

Age 12 y 1285 11.8 470 4.5 ,0.01

Incidence4

Age 5 y 1117 5.8 415 4.1 0.20

Age 8 y 1180 6.2 451 1.8 ,0.01

Age 12 y 1156 5.5 459 3.1 0.04

Reversion5

Age 5 y 168 76.2 55 96.4 ,0.01

Age 8 y 105 46.7 19 84.2 ,0.01

Age 12 y 129 32.6 11 36.4 0.75

1 n = 1755. BMIZ, body mass index–for-age z score.
2 Student�s t test or Fisher�s exact test.
3 For a given age, the child had a BMIZ value at the indicated level.
4 For a given age, the child had a BMIZ value at the indicated level, and at the previous

age, the child did not have a BMIZ at this level.
5 For a given age, the child did not have a BMIZ value at the indicated level, and at the

previous age, the child did have a BMIZ at this level.

Infant stunting and subsequent high BMIZ 2299



evidence that associations of stunting with prevalent and
incident BMIZ > 1 were stronger for urban children at ages 5
and 8 y, and for nonindigenous children at age 8 y. Prior
longitudinal studies indicated that stunting in early childhood
was associated with decreased BMI or body fat throughout
later life (13–18). Our study contributes to existing longitudi-
nal data because, to our knowledge, it is the first to investigate
associations of stunting in infancy with the incidence of or
reversion from overweight and obesity in childhood. This
informs an understanding of when high BMIZ develops or
subsides during the course of childhood.

Although the direction of the association between stunting at
age 1 y and BMIZ > 1 and BMIZ > 2 outcomes was consistent,
the magnitude varied. Stunting at age 1 y was associated with a
19% reduction in the risk of prevalent BMIZ > 1 at age 8 y and a
25% reduction in the risk of prevalent BMIZ > 1 at age 12 y. The
association was stronger for the risk of prevalent BMIZ > 2 at
age 8 y (49% reduction), but similar for the risk of prevalent
BMIZ > 2 at age 12 y (28% reduction). The probability of
reversion from BMIZ > 1 at age 5 y was 22% higher in stunted
children, whereas the probability of reversion from BMIZ > 2 at
age 5 y was ;16% higher.

Rising obesity rates in stunted children in developing countries
are a concern (30). Our results indicate that although some
stunted Peruvian children have a high BMIZ, there is no
evidence of increased high BMIZ status in stunted children

compared with nonstunted children. A potential pathway
through which stunting in infancy may influence subsequent
high BMIZ is delay of the onset of puberty (31). Puberty is
associated with an increase in BMI, so a relatively late onset of
puberty may result in a decrease in the prevalence of overweight
at age 12 y. Indeed, in our sample, 38% of children stunted at 1 y
of age and 45% of children not stunted at 1 y of age (Pearson�s
chi-square P = 0.02) had demonstrated signs of puberty at age
12 y (i.e., voice change and facial hair for boys, and onset of
menses for girls), suggesting that puberty is a pathway that
merits exploration in future research. However, the differing
prevalence of signs of puberty between stunted and nonstunted
children would not explain the decrease in prevalent overweight
at age 8 y that was associated with infant stunting, which
suggests that there are potentially other pathways operating
here.

Some studies conclude that stunting may contribute to
greater adiposity from impaired fat metabolism and higher
fasting respiratory quotients (32–36). Although our study does
not indicate an increased overall risk of higher BMIZ, we did
find differences between urban and rural children at ages 5 and
8 y, and between indigenous and nonindigenous children at age
8 y. RRs of prevalent and incident BMIZ > 1 for rural and
indigenous children were >1, but not significantly. Another study
in Peru found that in urban lowland children, length was
positively associated with BMI (37), which is consistent with our

TABLE 3 Stunting at age 1 y as a predictor of BMIZ . 1 and BMIZ . 2 in Peruvian children in the Young
Lives cohort1

Age 5 y Age 8 y Age 12 y

At risk, n RR (95% CI) P At risk, n RR (95% CI) P At risk, n RR (95% CI) P

BMIZ . 1

Prevalence

Model 12 1755 0.83 (0.71, 0.98) 0.032 1755 0.56 (0.46, 0.70) ,0.001 1755 0.45 (0.37, 0.56) ,0.001

Model 23 1755 0.85 (0.71, 1.01) 0.07 1755 0.79 (0.63, 0.98) 0.029 1755 0.72 (0.59, 0.89) 0.002

Model 34 1942 0.86 (0.73, 1.02) 0.09 1942 0.81 (0.66, 1.00) 0.049 1942 0.75 (0.61, 0.91) 0.004

Incidence

Model 12 1023 1.13 (0.88, 1.46) 0.34 1203 0.59 (0.42, 0.84) 0.003 1275 0.51 (0.37, 0.72) ,0.001

Model 23 1023 1.06 (0.80, 1.40) 0.68 1203 0.79 (0.55, 1.14) 0.21 1275 0.70 (0.49, 1.00) 0.051

Model 34 1132 1.05 (0.80, 1.37) 0.73 1331 0.84 (0.59, 1.19) 0.33 1412 0.75 (0.53, 1.05) 0.09

Reversion

Model 12 732 1.29 (1.13, 1.48) ,0.001 552 1.56 (1.31, 1.86) ,0.001 480 2.31 (1.71, 3.11) ,0.001

Model 23 732 1.24 (1.07, 1.45) 0.004 552 1.05 (0.87, 1.25) 0.62 480 0.98 (0.73, 1.33) 0.92

Model 34 810 1.22 (1.05, 1.42) 0.008 611 1.06 (0.88, 1.27) 0.54 530 1.02 (0.75, 1.38) 0.92

BMIZ . 2

Prevalence

Model 12 1755 0.49 (0.31, 0.80) 0.004 1755 0.23 (0.13, 0.43) ,0.001 1755 0.38 (0.24, 0.59) ,0.001

Model 23 1755 0.73 (0.45, 1.20) 0.22 1755 0.49 (0.27, 0.88) 0.017 1755 0.74 (0.48, 1.13) 0.16

Model 34 1942 0.84 (0.54, 1.31) 0.45 1942 0.51 (0.29, 0.90) 0.019 1942 0.72 (0.47, 1.10) 0.13

Incidence

Model 12 1532 0.70 (0.42, 1.19) 0.19 1631 0.29 (0.14, 0.59) ,0.001 1615 0.55 (0.31, 0.97) 0.039

Model 23 1532 0.99 (0.57, 1.72) 0.97 1631 0.54 (0.27, 1.09) 0.09 1615 0.93 (0.52, 1.64) 0.79

Model 34 1695 1.12 (0.69, 1.84) 0.65 1806 0.57 (0.29, 1.13) 0.11 1787 0.89 (0.51, 1.57) 0.70

Reversion

Model 12 223 1.26 (1.15, 1.40) ,0.001 124 1.80 (1.36, 2.40) ,0.001 140 1.12 (0.49, 2.54) 0.79

Model 23 223 1.16 (1.04, 1.29) 0.007 124 1.33 (0.97, 1.81) 0.07 140 0.94 (0.41, 2.16) 0.88

Model 34 247 1.16 (1.04, 1.29) 0.010 136 1.40 (0.99, 1.96) 0.06 155 0.96 (0.42, 2.18) 0.92

1 Results for generalized linear models with a Poisson distribution, log link, and robust variance. BMIZ, body mass index–for-age z score.
2 Bivariate model predicting overweight or obesity on the basis of stunting.
3 Adjusted for child sex; maternal height, BMI, indigenous status, and primary education; and number of household members, rural location,

geographic region, and wealth quintile.
4 Adjusted for the same covariates in model 2, but uses multiply imputed data in addition for missing outcomes.
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finding that infant stunting is associated with reduced prevalence
and incidence of BMIZ > 1 at age 8 y in urban children. The
authors of that study suggested that differences between rural
and urban populations may arise from environments that
present different opportunities for catch-up growth and the
accrual of adipose tissue. Understanding potential effect
modification may therefore be important for determining the
generalizability of findings on the effects of stunting on
overweight.

The multiple tests of interaction we conducted increased the
probability of erroneously rejecting the null hypothesis. If we
applied a Bonferroni correction to adjust for the 27 tests
conducted in Table 3, we would achieve a conservative P value
cutoff for significance at P = 0.0019. Using this adjusted cutoff,
we observe that none of the interactions met this threshold of
statistical significance. However, the consistent trend of signif-
icant interactions (P < 0.05) for urban compared with rural
status at ages 5 and 8 y for high BMIZ prevalence and incidence
outcomes suggests to us that this result may not be due to chance
alone. Likewise, we observed significant interactions for a =
0.05 by indigenous status for both prevalence and incidence of

BMIZ > 1 at age 8 y. We view these results as suggestive of
potential interactions that merit further inquiry in future
research.

Given the longitudinal nature of this study, adhering to the
WHO cutoff of BMIZ > 2 for overweight in children <5 y of age
and the cutoff of BMIZ > 1 for children$5 y of age would result
in an artificial increase in the incidence and prevalence of
overweight between ages 1 and 5 y. This could erroneously give
the impression that the distribution of child BMIZ was shifting
to the right as children aged. However, the opposite is the case,
as demonstrated in Figure 2. All analyses therefore should be
interpreted with respect to the indicated BMIZ cutoff, and not as
‘‘overweight’’ or ‘‘obesity’’ according to WHO definitions.

Child age was inversely associated with HAZ in round 1. To
address potential bias introduced by the fact that younger children
were underrepresented in the stunted population, we calculated
the predicted HAZ for children at 12 mo of age. This method
assumed that children of a given age maintained their relative
position in the HAZ distribution at age 12 mo. We cannot assess
the plausibility of this assumption with the Young Lives data.
However, the Guatemalan Institute for Nutrition in Central

TABLE 4 Modification of association of stunting at age 1 y with the prevalence of, incidence of, and
reversion from BMIZ . 1 by sex, indigenous status, and rural region in Peruvian children in the Young
Lives cohort1

Age 5 y Age 8 y Age 12 y

Association of stunting2 P 3 Association of stunting2 P 3 Association of stunting2 P 3

Prevalent BMIZ . 1

Sex 0.43 0.39 0.97

M 0.82 (0.67, 1.01) 0.76 (0.58, 0.99) 0.75 (0.58, 0.96)

F 0.94 (0.72, 1.22) 0.90 (0.66, 1.24) 0.74 (0.55, 1.01)

Indigenous status 0.61 0.022 0.71

Nonindigenous mother 0.83 (0.67, 1.04) 0.67 (0.50, 0.88) 0.76 (0.61, 0.95)

Indigenous mother 0.91 (0.70, 1.18) 1.10 (0.79, 1.55) 0.70 (0.46, 1.06)

Residence area 0.047 0.003 0.20

Urban 0.74 (0.58, 0.94) 0.64 (0.48, 0.84) 0.81 (0.66, 1.00)

Rural 1.04 (0.81, 1.34) 1.29 (0.88, 1.89) 0.58 (0.37, 0.93)

Incident BMIZ . 1

Sex 0.46 0.18 0.92

M 0.98 (0.71, 1.35) 0.68 (0.42, 1.11) 0.76 (0.50, 1.16)

F 1.19 (0.78, 1.83) 1.08 (0.67, 1.71) 0.73 (0.44, 1.23)

Indigenous status 0.57 0.014 0.96

Nonindigenous mother 0.98 (0.69, 1.39) 0.55 (0.32, 0.95) 0.74 (0.50, 1.10)

Indigenous mother 1.14 (0.76, 1.71) 1.41 (0.83, 2.39) 0.76 (0.40, 1.43)

Residence area 0.040 0.011 0.13

Urban 0.79 (0.53, 1.17) 0.59 (0.36, 0.96) 0.89 (0.62, 1.28)

Rural 1.36 (0.94, 1.97) 1.60 (0.88, 2.94) 0.50 (0.25, 0.98)

Reversion from BMIZ . 1

Sex 0.20 0.74 0.34

M 1.35 (1.08, 1.68) 1.03 (0.81, 1.31) 0.93 (0.63, 1.36)

F 1.13 (0.94, 1.35) 1.09 (0.86, 1.39) 1.19 (0.78, 1.81)

Indigenous status 0.86 0.49 0.37

Nonindigenous mother 1.24 (1.02, 1.50) 1.12 (0.88, 1.43) 0.82 (0.43, 1.57)

Indigenous mother 1.20 (0.97, 1.50) 0.99 (0.78, 1.27) 1.14 (0.81, 1.60)

Residence area 0.85 0.21 0.51

Urban 1.24 (1.02, 1.50) 1.21 (0.90, 1.63) 0.89 (0.49, 1.60)

Rural 1.20 (0.96, 1.50) 0.96 (0.79, 1.18) 1.11 (0.78, 1.59)

1 Values are RRs (95% CIs), n = 1942. One multiplicative interaction term was included separately in the model for each covariate

presented. Models include covariates and imputed outcomes. BMIZ, body mass index–for-age z score.
2 Results for generalized linear models with a Poisson distribution, log link, and robust variance.
3 P value on multiplicative interaction term.
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America and Panama longitudinal study, which has been used in
influential studies of the longer-run effects of early-life undernu-
trition (38), does have data on HAZ for the same children at ages
6, 12 and 18 mo. In that study, the correlation between HAZ at
ages 6 mo and 12 mo was 0.84, and at ages 12 and 18 mo was
0.89 (JR Behrman, unpublished results, 2016). If similar correla-
tions hold for the Young Lives data, our procedure yields good but
not perfect estimates of HAZ at age 12 mo even for the youngest
and oldest children in the sample in round 1. To further explore the
plausibility of our estimates, we conducted sensitivity analyses
(results not shown) by conducting our analyses on the subset of
children who were aged 11 and 13 mo in round 1. We found that
estimates of the association between stunting and subsequent
BMIZ > 1 and BMIZ > 2 outcomes tended to be somewhat further
from the null, indicating that any measurement error in our round
1 assessments of stunting made our estimates conservative.

Procedures for the measurement of anthropometric status were
standardized and performed 2 times by the same data collector to
ensure data validity. However, a slight degree of random measure-
ment error is inevitable. Such random variation is not likely to
differ systematically within the cohort, so any bias introduced from
mismeasurementwould be toward the null. As a result, our findings
again would be a conservative estimate of the true association
between infant stunting and subsequent high BMIZ.

Approximately 10% of the eligible observations in our data
set were missing BMIZ data at age 5, 8, or 12 y. Children missing
outcome data were significantly different from those with full
covariate data across several characteristics. Therefore, com-
plete case analyses may be biased. To account for this potential
bias, we conducted multiple imputation of missing outcomes
and report estimates for this analysis. Analyses that used complete
cases and those that used multiple imputation returned nearly
identical results.

This study contributes to the body of evidence related to
whether early-life stunting promotes physiologic changes that
influence adiposity later in life. Our evidence suggests that this is
not the case for our population, even after controlling for
potential confounders, and that stunting is instead associated
with reduced prevalence of overweight later in childhood.
Although the distribution of BMIZ at age 1 y is similar for
stunted and nonstunted children, the distributions diverge
throughout childhood, with a greater decline in BMIZ observed
for children stunted at 1 y of age. More research is needed to
understand the physiologic mechanisms that underlie the rela-
tion between early-life stunting and later weight gain, as well as
what might explain the observed effect modification by rural and
indigenous status.
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