173 research outputs found

    Deriving mesoscopic models of collective behaviour for finite populations

    Full text link
    Animal groups exhibit emergent properties that are a consequence of local interactions. Linking individual-level behaviour to coarse-grained descriptions of animal groups has been a question of fundamental interest. Here, we present two complementary approaches to deriving coarse-grained descriptions of collective behaviour at so-called mesoscopic scales, which account for the stochasticity arising from the finite sizes of animal groups. We construct stochastic differential equations (SDEs) for a coarse-grained variable that describes the order/consensus within a group. The first method of construction is based on van Kampen's system-size expansion of transition rates. The second method employs Gillespie's chemical Langevin equations. We apply these two methods to two microscopic models from the literature, in which organisms stochastically interact and choose between two directions/choices of foraging. These `binary-choice' models differ only in the types of interactions between individuals, with one assuming simple pair-wise interactions, and the other incorporating higher-order effects. In both cases, the derived mesoscopic SDEs have multiplicative, or state-dependent, noise. However, the different models demonstrate the contrasting effects of noise: increasing order in the pair-wise interaction model, whilst reducing order in the higher-order interaction model. Although both methods yield identical SDEs for such binary-choice, or one-dimensional, systems, the relative tractability of the chemical Langevin approach is beneficial in generalizations to higher-dimensions. In summary, this book chapter provides a pedagogical review of two complementary methods to construct mesoscopic descriptions from microscopic rules and demonstrates how resultant multiplicative noise can have counter-intuitive effects on shaping collective behaviour.Comment: Second version, 4 figures, 2 appendice

    The Influence of Mirror-Visual Feedback on Training-Induced Motor Performance Gains in the Untrained Hand

    Get PDF
    The well-documented observation of bilateral performance gains following unilateral motor training, a phenomenon known as cross-limb transfer, has important implications for rehabilitation. It has recently been shown that provision of a mirror image of the active hand during unilateral motor training has the capacity to enhance the efficacy of this phenomenon when compared to training without augmented visual feedback (i.e., watching the passive hand), possibly via action observation effects [1]. The current experiment was designed to confirm whether mirror-visual feedback (MVF) during motor training can indeed elicit greater performance gains in the untrained hand compared to more standard visual feedback (i.e., watching the active hand). Furthermore, discussing the mechanisms underlying any such MVF-induced behavioural effects, we suggest that action observation and the cross-activation hypothesis may both play important roles in eliciting cross-limb transfer. Eighty participants practiced a fast-as-possible two-ball rotation task with their dominant hand. During training, three different groups were provided with concurrent visual feedback of the active hand, inactive hand or a mirror image of the active hand with a fourth control group receiving no training. Pre- and post-training performance was measured in both hands. MVF did not increase the extent of training-induced performance changes in the untrained hand following unilateral training above and beyond those observed for other types of feedback. The data are consistent with the notion that cross-limb transfer, when combined with MVF, is mediated by cross-activation with action observation playing a less unique role than previously suggested. Further research is needed to replicate the current and previous studies to determine the clinical relevance and potential benefits of MVF for cases that, due to the severity of impairment, rely on unilateral training programmes of the unaffected limb to drive changes in the contralateral affected limb

    The GCC repeat length in the 5'UTR of MRP1 gene is polymorphic: a functional characterization of its relevance for cystic fibrosis

    Get PDF
    BACKGROUND: Among the members of the ATP binding cassette transporter superfamily, MRPs share the closest homology with the CFTR protein, which is defective in CF disease. MRP1 has been proposed as a potential modifier gene and/or as novel target for pharmacotherapy of CF to explain the clinical benefits observed in some CF patients treated with the macrolide AZM. The 5'UTR of the MRP1 gene contains a GCC triplet repeat that could represent a polymorphic site and affect the activity of the promoter. METHODS: The MRP1 5' flanking region was amplified by PCR from 36 CF patients and 100 non-CF subjects and the number of GCC triplets of each allele was determined by sequence and electrophoretic analysis. We performed gene reporter studies in CF airway epithelial cells 16HBE14o-AS3, in basal conditions and in the presence of AZM. RESULTS: We found that the GCC repeat is polymorphic, ranging from 7 to 14 triplets either in CF or in non-CF subjects. Our data are preliminary and have to be confirmed on a larger population of CF subjects. The transcriptional activity of the proximal MRP1 5' regulatory region revealed no statistically significant correlations between the number of repeats and treatment with AZM. CONCLUSION: We identified a novel polymorphism in the 5'UTR of MRP1 gene that provides multiple alleles in a gene relevant for multidrug resistance as well as for CF, determining that this region is transcriptionally active and that this activity does not appear to be influenced by AZM treatment

    If I Were You: Perceptual Illusion of Body Swapping

    Get PDF
    The concept of an individual swapping his or her body with that of another person has captured the imagination of writers and artists for decades. Although this topic has not been the subject of investigation in science, it exemplifies the fundamental question of why we have an ongoing experience of being located inside our bodies. Here we report a perceptual illusion of body-swapping that addresses directly this issue. Manipulation of the visual perspective, in combination with the receipt of correlated multisensory information from the body was sufficient to trigger the illusion that another person's body or an artificial body was one's own. This effect was so strong that people could experience being in another person's body when facing their own body and shaking hands with it. Our results are of fundamental importance because they identify the perceptual processes that produce the feeling of ownership of one's body

    Intention Understanding in Autism

    Get PDF
    When we observe a motor act (e.g. grasping a cup) done by another individual, we extract, according to how the motor act is performed and its context, two types of information: the goal (grasping) and the intention underlying it (e.g. grasping for drinking). Here we examined whether children with autistic spectrum disorder (ASD) are able to understand these two aspects of motor acts. Two experiments were carried out. In the first, one group of high-functioning children with ASD and one of typically developing (TD) children were presented with pictures showing hand-object interactions and asked what the individual was doing and why. In half of the “why” trials the observed grip was congruent with the function of the object (“why-use” trials), in the other half it corresponded to the grip typically used to move that object (“why-place” trials). The results showed that children with ASD have no difficulties in reporting the goals of individual motor acts. In contrast they made several errors in the why task with all errors occurring in the “why-place” trials. In the second experiment the same two groups of children saw pictures showing a hand-grip congruent with the object use, but within a context suggesting either the use of the object or its placement into a container. Here children with ASD performed as TD children, correctly indicating the agent's intention. In conclusion, our data show that understanding others' intentions can occur in two ways: by relying on motor information derived from the hand-object interaction, and by using functional information derived from the object's standard use. Children with ASD have no deficit in the second type of understanding, while they have difficulties in understanding others' intentions when they have to rely exclusively on motor cues

    The Dynamics of Sensorimotor Cortical Oscillations during the Observation of Hand Movements: An EEG Study

    Get PDF
    Background The observation of action done by others determines a desynchronization of the rhythms recorded from cortical central regions. Here, we examined whether the observation of different types of hand movements (target directed, non-target directed, cyclic and non-cyclic) elicits different EEG cortical temporal patterns. Methodology Video-clips of four types of hand movements were shown to right-handed healthy participants. Two were target directed (grasping and pointing) motor acts; two were non-target directed (supinating and clenching) movements. Grasping and supinating were performed once, while pointing and clenching twice (cyclic movements). High-density EEG was recorded and analyzed by means of wavelet transform, subdividing the time course in time bins of 200 ms. The observation of all presented movements produced a desynchronization of alpha and beta rhythms in central and parietal regions. The rhythms desynchronized as soon as the hand movement started, the nadir being reached around 700 ms after movement onset. At the end of the movement, a large power rebound occurred for all bands. Target and non-target directed movements produced an alpha band desynchronization in the central electrodes at the same time, but with a stronger desynchronization and a prolonged rebound for target directed motor acts. Most interestingly, there was a clear correlation between the velocity profile of the observed movements and beta band modulation. Significance Our data show that the observation of motor acts determines a modulation of cortical rhythm analogous to that occurring during motor act execution. In particular, the cortical motor system closely follows the velocity of the observed movements. This finding provides strong evidence for the presence in humans of a mechanism (mirror mechanism) mapping action observation on action execution motor programs

    A Review of Surgical Informed Consent: Past, Present, and Future. A Quest to Help Patients Make Better Decisions

    Get PDF
    Contains fulltext : 87422.pdf (publisher's version ) (Closed access)BACKGROUND: Informed consent (IC) is a process requiring a competent doctor, adequate transfer of information, and consent of the patient. It is not just a signature on a piece of paper. Current consent processes in surgery are probably outdated and may require major changes to adjust them to modern day legislation. A literature search may provide an opportunity for enhancing the quality of the surgical IC (SIC) process. METHODS: Relevant English literature obtained from PubMed, Picarta, PsycINFO, and Google between 1993 and 2009 was reviewed. RESULTS: The body of literature with respect to SIC is slim and of moderate quality. The SIC process is an underestimated part of surgery and neither surgeons nor patients sufficiently realize its importance. Surgeons are not specifically trained and lack the competence to guide patients through a legally correct SIC process. Computerized programs can support the SIC process significantly but are rarely used for this purpose. CONCLUSIONS: IC should be integrated into our surgical practice. Unfortunately, a big gap exists between the theoretical/legal best practice and the daily practice of IC. An optimally informed patient will have more realistic expectations regarding a surgical procedure and its associated risks. Well-informed patients will be more satisfied and file fewer legal claims. The use of interactive computer-based programs provides opportunities to improve the SIC process.1 juli 201
    corecore