178 research outputs found

    Results of matching valve and root repair to aortic valve and root pathology

    Get PDF
    ObjectiveFor patients with aortic root pathology and aortic valve regurgitation, aortic valve replacement is problematic because no durable bioprosthesis exists, and mechanical valves require lifetime anticoagulation. This study sought to assess outcomes of combined aortic valve and root repair, including comparison with matched bioprosthesis aortic valve replacement.MethodsFrom November 1990 to January 2005, 366 patients underwent modified David reimplantation (n = 72), root remodeling (n = 72), or valve repair with sinotubular junction tailoring (n = 222). Active follow-up was 99% complete, with a mean of 5.6 ± 4.0 years (maximum 17 years); follow-up for vital status averaged 8.5 ± 3.6 years (maximum 19 years). Propensity-adjusted models were developed for fair comparison of outcomes.ResultsThirty-day and 5-, 10-, and 15-year survivals were 98%, 86%, 74%, and 58%, respectively, similar to that of the US matched population and better than that after bioprosthesis aortic valve replacement. Propensity-score–adjusted survival was similar across procedures (P > .3). Freedom from reoperation at 30 days and 5 and 10 years was 99%, 92%, and 89%, respectively, and was similar across procedures (P > .3) after propensity-score adjustment. Patients with tricuspid aortic valves were more likely to be free of reoperation than those with bicuspid valves at 10 years (93% vs 77%, P = .002), equivalent to bioprosthesis aortic valve replacement and superior after 12 years. Bioprostheses increasingly deteriorated after 7 years, and hazard functions for reoperation crossed at 7 years.ConclusionsValve preservation (rather than replacement) and matching root procedures have excellent early and long-term results, with increasing survival benefit at 7 years and fewer reoperations by 12 years. We recommend this procedure for experienced surgical teams

    Borrelia burgdorferi small lipoprotein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen transmission from ticks to mice

    Get PDF
    Borrelia burgdorferi lipoprotein Lp6.6 is a differentially produced spirochete antigen. An assessment of lp6.6 expression covering representative stages of the infectious cycle of spirochetes demonstrates that the gene is solely expressed during pathogen persistence in ticks. Deletion of lp6.6 in infectious B. burgdorferi did not influence in vitro growth, or its ability to persist and induce inflammation in mice, migrate to larval or nymphal ticks or survive through the larval-nymphal molt. However, Lp6.6-deficient spirochetes displayed significant impairment in their ability to transmit from infected ticks to naïve mice, which was restored upon genetic complementation of the mutant with a wild-type copy of lp6.6, establishing that Lp6.6 plays a role in pathogen transmission from ticks to mammals. Lp6.6 is a subsurface, yet highly abundant, outer membrane antigen. Two-dimensional blue native/SDS-PAGE coupled with liquid chromatography-mass spectrometry (LC-MS/MS) analysis and protein cross-linking studies independently shows that Lp6.6 exists in multiple protein complexes in the outer membrane. We speculate that the function of Lp6.6 is connected to the physiological processes of these membrane complexes. Further characterization of differentially produced membrane antigens and associated protein complexes will likely aid in our understanding of the molecular details of B. burgdorferi persistence and transmission through a complex enzootic cycle

    Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium†

    Get PDF
    To propose standardized consensus definitions for important clinical endpoints in transcatheter aortic valve implantation (TAVI), investigations in an effort to improve the quality of clinical research and to enable meaningful comparisons between clinical trials. To make these consensus definitions accessible to all stakeholders in TAVI clinical research through a peer reviewed publication, on behalf of the public health

    A potential role for daptomycin in enterococcal infections: what is the evidence?

    Get PDF
    Nosocomial infections caused by enterococci present a challenge for clinicians because treatment options are often limited due to the widespread occurrence of strains resistant to multiple antibiotics, including vancomycin. Daptomycin is a first-in-class cyclic lipopeptide that has proven efficacy for the treatment of Gram-positive infections. Although methicillin-resistant Staphylococcus aureus has been the most prominent target in the clinical development of daptomycin, this agent has demonstrated potent bactericidal activity in enterococcal infection models and has been used for the treatment of enterococcal infections in humans. In recent years, large-scale susceptibility studies have shown that daptomycin is active against >98% of enterococci tested, irrespective of their susceptibility to other antibacterial agents. This lack of cross-resistance reflects the fact that daptomycin has a mode of action distinct from those of other antibiotics, including glycopeptides. While there are limited data available from randomized controlled trials, extensive clinical experience with daptomycin in enterococcal infections (including bacteraemia, endocarditis, skin and soft tissue infections, bone and joint infections and urinary tract infections) has been reported. This growing body of evidence provides useful insights regarding the efficacy of daptomycin against enterococci in clinical settings

    Proteins That Promote Filopodia Stability, but Not Number, Lead to More Axonal-Dendritic Contacts

    Get PDF
    Dendritic filopodia are dynamic protrusions that are thought to play an active role in synaptogenesis and serve as precursors to spine synapses. However, this hypothesis is largely based on a temporal correlation between filopodia formation and synaptogenesis. We investigated the role of filopodia in synapse formation by contrasting the roles of molecules that affect filopodia elaboration and motility, versus those that impact synapse induction and maturation. We used a filopodia inducing motif that is found in GAP-43, as a molecular tool, and found this palmitoylated motif enhanced filopodia number and motility, but reduced the probability of forming a stable axon-dendrite contact. Conversely, expression of neuroligin-1 (NLG-1), a synapse inducing cell adhesion molecule, resulted in a decrease in filopodia motility, but an increase in the number of stable axonal contacts. Moreover, RNAi knockdown of NLG-1 reduced the number of presynaptic contacts formed. Postsynaptic scaffolding proteins such as Shank1b, a protein that induces the maturation of spine synapses, increased the rate at which filopodia transformed into spines by stabilization of the initial contact with axons. Taken together, these results suggest that increased filopodia stability and not density, may be the rate-limiting step for synapse formation

    Difference in expression between AQP1 and AQP5 in porcine endometrium and myometrium in response to steroid hormones, oxytocin, arachidonic acid, forskolin and cAMP during the mid-luteal phase of the estrous cycle and luteolysis

    Get PDF
    BACKGROUND: Recently, we demonstrated in vitro that AQP1 and AQP5 in the porcine uterus are regulated by steroid hormones (P4, E2), arachidonic acid (AA), forskolin (FSK) and cAMP during the estrous cycle. However, the potential of the porcine separated uterine tissues, the endometrium and myometrium, to express these AQPs remains unknown. Thus, in this study, the responses of AQP1 and AQP5 to P4, E2 oxytocin (OT), AA, FSK and cAMP in the porcine endometrium and myometrium were examined during the mid-luteal phase of the estrous cycle and luteolysis.METHODS: Real-time PCR and western blot analysis.RESULTS: Progesterone up-regulated the expression of AQP1/AQP5 mRNAs and proteins in the endometrium and myometrium, especially during luteolysis. Similarly, E2 also stimulated the expression of both AQPs, but only in the endometrium. AA led to the upregulation of AQP1/AQP5 in the endometrium during luteolysis. In turn, OT increased the expression of AQP1/AQP5 mRNAs and proteins in the myometrium during mid-luteal phase. Moreover, a stimulatory effect of forskolin and cAMP on the expression of AQP1/AQP5 mRNAs and proteins in the endometrium and myometrium dominated during luteolysis, but during the mid-luteal phase their influence on the expression of these AQPs was differentiated depending on the type of tissue and the incubation duration.CONCLUSIONS: These results seem to indicate that uterine tissues; endometrium and myometrium, exhibit their own AQP expression profiles in response to examined factors. Moreover, the responses of AQP1/AQP5 at mRNA and protein levels to the studied factors in the endometrium and myometrium are more pronounced during luteolysis. This suggests that the above effects of the studied factors are connected with morphological and physiological changes taking place in the pig uterus during the estrous cycle.</p

    The genome sequence of segmental allotetraploid peanut Arachis hypogaea

    Get PDF
    Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans
    corecore