140 research outputs found

    Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard

    Get PDF
    The diversity of highly active bacterial communities in cryoconite holes on three Arctic glaciers in Svalbard was investigated using terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA locus. Construction and sequencing of clone libraries allowed several members of these communities to be identified, with Proteobacteria being the dominant one, followed by Cyanobacteria and Bacteroidetes. T-RFLP data revealed significantly different communities in holes on the (cold) valley glacier Austre BrĂžggerbreen relative to two adjacent (polythermal) valley glaciers, Midtre LovĂ©nbreen and Vestre BrĂžggerbreen. These population compositions correlate with differences in organic matter content, temperature and the metabolic activity of microbial communities concerned. No within-glacier spatial patterns were observed in the communities identified over the 2-year period and with the 1 km-spaced sampling. We infer that surface hydrology is an important factor in the development of cryoconite bacterial communities

    Renal outcome in adults with renal insufficiency and irregular asymmetric kidneys

    Get PDF
    BACKGROUND: The commonest cause of end-stage renal failure (ESRF) in children and young adults is congenital malformation of the kidney and urinary tract. In this retrospective review, we examine whether progression to ESRF can be predicted and whether treatment with angiotensin converting enzyme inhibitors (ACEI) can delay or prevent this. METHODS: We reviewed 78 patients with asymmetric irregular kidneys as a consequence of either primary vesico-ureteric reflux or renal dysplasia (Group 1, n = 44), or abnormal bladder function (Group 2, n = 34). Patients (median age 24 years) had an estimated GFR (eGFR) < 60 ml/min/1.73 m(2 )with at least 5 years of follow up (median 143 months). 48 patients received ACEI. We explored potential prognostic factors that affect the time to ESRF using Cox-regression analyses. RESULTS: At start, mean (SE) creatinine was 189 (8) ÎŒmol/l, mean eGFR 41 (1) ml/min 1.73 m(2), mean proteinuria 144 (14) mg/mmol creatinine (1.7 g/24 hrs). Of 78 patients, 36 (46%) developed ESRF, but none of 19 with proteinuria less than 50 mg/mmol and only two of 18 patients with eGFR above 50 ml/min did so. Renal outcome between Groups 1 and 2 appeared similar with no evidence for a difference. A benefit in favour of treatment with ACEI was observed above an eGFR of 40 ml/min (p = 0.024). CONCLUSION: The similar outcome of the two groups supports the nephrological nature of progressive renal failure in young men born with abnormal bladders. There is a watershed GFR of 40–50 ml/min at which ACEI treatment can be successful at improving renal outcome

    Local host-dependent persistence of the entomopathogenic nematode Steinernema carpocapsae used to control the large pine weevil Hylobius abietis

    Get PDF
    Entomopathogenic nematodes (EPN) applied inundatively to suppress insect pests are more likely to persist and establish in stable agroecosystems than in annual crops. We investigated a system of intermediate stability: three stumps harbouring the large pine weevil (Hylobius abietis L.; Coleoptera: Curculionidae), a major European forestry pest. We tested whether persistence of EPN Steinernema carpocapsae Weiser (Rhabditida: Steinernematidae) applied around stumps is maintained by recycling of EPN through pine weevils developing within stumps. Steinernema carpocapsae was detected in soil around and under the bark of treated tree stumps up to two years, but not 4–5 years after application. Differences in nematode presence between sites were better explained by tree species (pine or spruce) than soil type (mineral or peat). Presence of S. carpocapsae in soil was positively correlated with the number of H. abietis emerging from untreated stumps the previous year, which was greater for pine stumps than spruce stumps

    A Finite Element Model Approach to Determine the Influence of Electrode Design and Muscle Architecture on Myoelectric Signal Properties.

    Get PDF
    INTRODUCTION: Surface electromyography (sEMG) is the measurement of the electrical activity of the skeletal muscle tissue detected at the skin's surface. Typically, a bipolar electrode configuration is used. Most muscles have pennate and/or curved fibres, meaning it is not always feasible to align the bipolar electrodes along the fibres direction. Hence, there is a need to explore how different electrode designs can affect sEMG measurements. METHOD: A three layer finite element (skin, fat, muscle) muscle model was used to explore different electrode designs. The implemented model used as source signal an experimentally recorded intramuscular EMG taken from the biceps brachii muscle of one healthy male. A wavelet based intensity analysis of the simulated sEMG signal was performed to analyze the power of the signal in the time and frequency domain. RESULTS: The model showed muscle tissue causing a bandwidth reduction (to 20-92- Hz). The inter-electrode distance (IED) and the electrode orientation relative to the fibres affected the total power but not the frequency filtering response. The effect of significant misalignment between the electrodes and the fibres (60°- 90°) could be reduced by increasing the IED (25-30 mm), which attenuates signal cancellation. When modelling pennated fibres, the muscle tissue started to act as a low pass filter. The effect of different IED seems to be enhanced in the pennated model, while the filtering response is changed considerably only when the electrodes are close to the signal termination within the model. For pennation angle greater than 20°, more than 50% of the source signal was attenuated, which can be compensated by increasing the IED to 25 mm. CONCLUSION: Differences in tissue filtering properties, shown in our model, indicates that different electrode designs should be considered for muscle with different geometric properties (i.e. pennated muscles)

    Cognitive Behavior Therapy for Anxious Adolescents: Developmental Influences on Treatment Design and Delivery

    Get PDF
    Anxiety disorders in adolescence are common and disruptive, pointing to a need for effective treatments for this age group. Cognitive behavior therapy (CBT) is one of the most popular interventions for adolescent anxiety, and there is empirical support for its application. However, a significant proportion of adolescent clients continue to report anxiety symptoms post-treatment. This paper underscores the need to attend to the unique developmental characteristics of the adolescent period when designing and delivering treatment, in an effort to enhance treatment effectiveness. Informed by the literature from developmental psychology, developmental psychopathology, and clinical child and adolescent psychology, we review the ‘why’ and the ‘how’ of developmentally appropriate CBT for anxious adolescents. ‘Why’ it is important to consider developmental factors in designing and delivering CBT for anxious adolescents is addressed by examining the age-related findings of treatment outcome studies and exploring the influence of developmental factors, including cognitive capacities, on engagement in CBT. ‘How’ clinicians can developmentally tailor CBT for anxious adolescents in six key domains of treatment design and delivery is illustrated with suggestions drawn from both clinically and research-oriented literature. Finally, recommendations are made for research into developmentally appropriate CBT for anxious adolescents

    Lipid Composition of the Human Eye: Are Red Blood Cells a Good Mirror of Retinal and Optic Nerve Fatty Acids?

    Get PDF
    International audienceBACKGROUND: The assessment of blood lipids is very frequent in clinical research as it is assumed to reflect the lipid composition of peripheral tissues. Even well accepted such relationships have never been clearly established. This is particularly true in ophthalmology where the use of blood lipids has become very common following recent data linking lipid intake to ocular health and disease. In the present study, we wanted to determine in humans whether a lipidomic approach based on red blood cells could reveal associations between circulating and tissue lipid profiles. To check if the analytical sensitivity may be of importance in such analyses, we have used a double approach for lipidomics. METHODOLOGY AND PRINCIPAL FINDINGS: Red blood cells, retinas and optic nerves were collected from 9 human donors. The lipidomic analyses on tissues consisted in gas chromatography and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS). Gas chromatography did not reveal any relevant association between circulating and ocular fatty acids except for arachidonic acid whose circulating amounts were positively associated with its levels in the retina and in the optic nerve. In contrast, several significant associations emerged from LC-ESI-MS analyses. Particularly, lipid entities in red blood cells were positively or negatively associated with representative pools of retinal docosahexaenoic acid (DHA), retinal very-long chain polyunsaturated fatty acids (VLC-PUFA) or optic nerve plasmalogens. CONCLUSIONS AND SIGNIFICANCE: LC-ESI-MS is more appropriate than gas chromatography for lipidomics on red blood cells, and further extrapolation to ocular lipids. The several individual lipid species we have identified are good candidates to represent circulating biomarkers of ocular lipids. However, further investigation is needed before considering them as indexes of disease risk and before using them in clinical studies on optic nerve neuropathies or retinal diseases displaying photoreceptors degeneration

    The non-immunosuppressive management of childhood nephrotic syndrome

    Get PDF
    • 

    corecore