150 research outputs found

    Degenerate Stars and Gravitational Collapse in AdS/CFT

    Get PDF
    We construct composite CFT operators from a large number of fermionic primary fields corresponding to states that are holographically dual to a zero temperature Fermi gas in AdS space. We identify a large N regime in which the fermions behave as free particles. In the hydrodynamic limit the Fermi gas forms a degenerate star with a radius determined by the Fermi level, and a mass and angular momentum that exactly matches the boundary calculations. Next we consider an interacting regime, and calculate the effect of the gravitational back-reaction on the radius and the mass of the star using the Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine the "Chandrasekhar limit" beyond which the degenerate star (presumably) undergoes gravitational collapse towards a black hole. This is interpreted on the boundary as a high density phase transition from a cold baryonic phase to a hot deconfined phase.Comment: 75 page

    Impacts on terrestrial biodiversity of moving from a 2ᵒC to a 1.5ᵒC target

    Get PDF
    We applied a recently developed tool to examine the reduction in climate risk to biodiversity in moving from a 2°C to a 1.5°C target. We then reviewed the recent literature examining the impact of (a) land-based mitigation options and (b) land-based greenhouse gas removal options on biodiversity. We show that holding warming to 1.5°C versus 2°C can significantly reduce the number of species facing a potential loss of 50% of their climatic range. Further, there would be an increase of 5.5–14% of the globe that could potentially act as climatic refugia for plants and animals, an area equivalent to the current global protected area network. Efforts to meet the 1.5°C target through mitigation could largely be consistent with biodiversity protection/enhancement. For impacts of land-based greenhouse gas removal technologies on biodiversity, some (e.g. soil carbon sequestration) could be neutral or positive, others (e.g. bioenergy with carbon capture and storage) are likely to lead to conflicts, while still others (e.g. afforestation/reforestation) are context-specific, when applied at scales necessary for meaningful greenhouse gas removal. Additional effort to meet the 1.5°C target presents some risks, particularly if inappropriately managed, but it also presents opportunities. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'

    FAST: Towards safe and effective subcutaneous immunotherapy of persistent life-threatening food allergies.

    Get PDF
    To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.ABSTRACT: The FAST project (Food Allergy Specific Immunotherapy) aims at the development of safe and effective treatment of food allergies, targeting prevalent, persistent and severe allergy to fish and peach. Classical allergen-specific immunotherapy (SIT), using subcutaneous injections with aqueous food extracts may be effective but has proven to be accompanied by too many anaphylactic side-effects. FAST aims to develop a safe alternative by replacing food extracts with hypoallergenic recombinant major allergens as the active ingredients of SIT. Both severe fish and peach allergy are caused by a single major allergen, parvalbumin (Cyp c 1) and lipid transfer protein (Pru p 3), respectively. Two approaches are being evaluated for achieving hypoallergenicity, i.e. site-directed mutagenesis and chemical modification. The most promising hypoallergens will be produced under GMP conditions. After pre-clinical testing (toxicology testing and efficacy in mouse models), SCIT with alum-absorbed hypoallergens will be evaluated in phase I/IIa and IIb randomized double-blind placebo-controlled (DBPC) clinical trials, with the DBPC food challenge as primary read-out. To understand the underlying immune mechanisms in depth serological and cellular immune analyses will be performed, allowing identification of novel biomarkers for monitoring treatment efficacy. FAST aims at improving the quality of life of food allergic patients by providing a safe and effective treatment that will significantly lower their threshold for fish or peach intake, thereby decreasing their anxiety and dependence on rescue medication

    Post-supereruption recovery at Toba Caldera

    Get PDF
    Large calderas, or supervolcanoes, are sites of the most catastrophic and hazardous events on Earth, yet the temporal details of post-supereruption activity, or resurgence, remain largely unknown, limiting our ability to understand how supervolcanoes work and address their hazards. Toba Caldera, Indonesia, caused the greatest volcanic catastrophe of the last 100 kyr, climactically erupting ~74 ka. Since the supereruption, Toba has been in a state of resurgence but its magmatic and uplift history has remained unclear. Here we reveal that new 14 C, zircon U-Th crystallization and (U-Th)/He ages show resurgence commenced at 69.7±4.5 ka and continued until at least ~2.7 ka, progressing westward across the caldera, as reflected by post-caldera effusive lava eruptions and uplifted lake sediment. The major stratovolcano north of Toba, Sinabung, shows strong geochemical kinship with Toba, and zircons from recent eruption products suggest Toba's climactic magma reservoir extends beneath Sinabung and is being tapped during eruptions

    Therapeutic potential of transdermal glyceryl trinitrate in the management of acute stroke

    Get PDF
    The nitric oxide donor, glyceryl trinitrate (GTN), is a candidate treatment for the management of acute stroke with haemodynamic and potential reperfusion and neuroprotective effects. When administered as a transdermal patch during the acute and subacute phases after stroke, GTN was safe, lowered blood pressure, maintained cerebral blood flow, and did not induce cerebral steal or alter functional outcome. However, when given within 6 h of stroke onset, GTN reduced death and dependency (odds ratio 0.52; 95% confidence interval 0.34–0.78), death, disability, cognitive impairment and mood disturbance, and improved quality of life (data from two trials, n = 312). In a pooled analysis of four studies (n = 186), GTN reduced between-visit systolic blood pressure variability over days 1–7 compared with no GTN (mean difference -2.09; 95% confidence interval -3.83 to -0.35; p = 0.019). The efficacy of GTN given in the ultra-acute/pre-hospital setting is currently being assessed and, if found to be beneficial, the implications for hyperacute stroke practice are significant. Here, we discuss the evidence to date, potential mechanisms of action and future possibilities, including unanswered questions, for the therapeutic potential of GTN in acute stroke

    Atmospheric electrification in dusty, reactive gases in the solar system and beyond

    Get PDF
    Detailed observations of the solar system planets reveal a wide variety of local atmospheric conditions. Astronomical observations have revealed a variety of extrasolar planets none of which resembles any of the solar system planets in full. Instead, the most massive amongst the extrasolar planets, the gas giants, appear very similar to the class of (young) Brown Dwarfs which are amongst the oldest objects in the universe. Despite of this diversity, solar system planets, extrasolar planets and Brown Dwarfs have broadly similar global temperatures between 300K and 2500K. In consequence, clouds of different chemical species form in their atmospheres. While the details of these clouds differ, the fundamental physical processes are the same. Further to this, all these objects were observed to produce radio and X-ray emission. While both kinds of radiation are well studied on Earth and to a lesser extent on the solar system planets, the occurrence of emission that potentially originate from accelerated electrons on Brown Dwarfs, extrasolar planets and protoplanetary disks is not well understood yet. This paper offers an interdisciplinary view on electrification processes and their feedback on their hosting environment in meteorology, volcanology, planetology and research on extrasolar planets and planet formation

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Peripheral Pulmonary Artery Stenosis as a Cause of Pulmonary Hypertension in Adults

    No full text

    Ferret and Pig Models of Cystic Fibrosis: Prospects and Promise for Gene Therapy

    No full text
    Large animal models of genetic diseases are rapidly becoming integral to biomedical research as technologies to manipulate the mammalian genome improve. The creation of cystic fibrosis (CF) ferrets and pigs is an example of such progress in animal modeling, with the disease phenotypes in the ferret and pig models more reflective of human CF disease than mouse models. The ferret and pig CF models also provide unique opportunities to develop and assess the effectiveness of gene and cell therapies to treat affected organs. In this review, we examine the organ disease phenotypes in these new CF models and the opportunities to test gene therapies at various stages of disease progression in affected organs. We then discuss the progress in developing recombinant replication-defective adenoviral, adeno-associated viral, and lentiviral vectors to target genes to the lung and pancreas in ferrets and pigs, the two most affected organs in CF. Through this review, we hope to convey the potential of these new animal models for developing CF gene and cell therapies
    corecore