177 research outputs found

    Body composition and body fat distribution are related to cardiac autonomic control in non-alcoholic fatty liver disease patients

    Get PDF
    BACKGROUND/OBJECTIVES: Heart rate recovery (HRR), a cardiac autonomic control marker, was shown to be related to body composition (BC), yet this was not tested in non-alcoholic fatty liver disease (NAFLD) patients. The aim of this study was to determine if, and to what extent, markers of BC and body fat (BF) distribution are related to cardiac autonomic control in NAFLD patients. SUBJECTS/METHODS: BC was assessed with dual-energy X-ray absorptiometry in 28 NAFLD patients (19 men, 51±13 years, and 9 women, 47±13 years). BF depots ratios were calculated to assess BF distribution. Subjects’ HRR was recorded 1 (HRR1) and 2 min (HRR2) immediately after a maximum graded exercise test. RESULTS: BC and BF distribution were related to HRR; particularly weight, trunk BF and trunk BF-to-appendicular BF ratio showed a negative relation with HRR1 (r 1⁄4 0.613, r 1⁄4 0.597 and r 1⁄4 0.547, respectively, Po0.01) and HRR2 (r 1⁄4 0.484, r 1⁄4 0.446, Po0.05, and r 1⁄4 0.590, Po0.01, respectively). Age seems to be related to both HRR1 and HRR2 except when controlled for BF distribution. The preferred model in multiple regression should include trunk BF-to-appendicular BF ratio and BF to predict HRR1 (r2 1⁄4 0.549; Po0.05), and trunk BF-to-appendicular BF ratio alone to predict HRR2 (r2 1⁄4 0.430; Po0.001). CONCLUSIONS: BC and BF distribution were related to HRR in NAFLD patients. Trunk BF-to-appendicular BF ratio was the best independent predictor of HRR and therefore may be best related to cardiovascular increased risk, and possibly act as a mediator in age-related cardiac autonomic control variation.info:eu-repo/semantics/publishedVersio

    An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae

    Get PDF
    Background: Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this process is still very limited. Methodology/Principal Findings: We identified an Anopheles gambiae epithelial serine protease (AgESP) that is constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the salivary glands that is critical for Plasmodium parasites to cross these two epithelial barriers. AgESP silencing greatly reduces Plasmodium berghei and Plasmodium falciparum midgut invasion and prevents the transcriptional activation of gelsolin, a key regulator of actin remodeling and a reported Plasmodium agonist. AgESP expression is highly induced in midgut cells invaded by Plasmodium, suggesting that this protease also participates in the apoptotic response to invasion. In salivary gland epithelial cells, AgESP is localized on the basal side–the surface with which sporozoites interact. AgESP expression in the salivary gland is also induced in response to P. berghei and P. falciparum sporozoite invasion, and AgESP silencing significantly reduces the number of sporozoites that invade this organ. Conclusion: Our findings indicate that AgESP is required for Plasmodium parasites to effectively traverse the midgut and salivary gland epithelial barriers. Plasmodium parasites need to modify the actin cytoskeleton of mosquito epithelial cells t

    Malaria Parasite Invasion of the Mosquito Salivary Gland Requires Interaction between the Plasmodium TRAP and the Anopheles Saglin Proteins

    Get PDF
    SM1 is a twelve-amino-acid peptide that binds tightly to the Anopheles salivary gland and inhibits its invasion by Plasmodium sporozoites. By use of UV-crosslinking experiments between the peptide and its salivary gland target protein, we have identified the Anopheles salivary protein, saglin, as the receptor for SM1. Furthermore, by use of an anti-SM1 antibody, we have determined that the peptide is a mimotope of the Plasmodium sporozoite Thrombospondin Related Anonymous Protein (TRAP). TRAP binds to saglin with high specificity. Point mutations in TRAP's binding domain A abrogate binding, and binding is competed for by the SM1 peptide. Importantly, in vivo down-regulation of saglin expression results in strong inhibition of salivary gland invasion. Together, the results suggest that saglin/TRAP interaction is crucial for salivary gland invasion by Plasmodium sporozoites

    Search for supersymmetric particles in scenarios with a gravitino LSP and stau NLSP

    Get PDF
    Sleptons, neutralinos and charginos were searched for in the context of scenarios where the lightest supersymmetric particle is the gravitino. It was assumed that the stau is the next-to-lightest supersymmetric particle. Data collected with the DELPHI detector at a centre-of-mass energy near 189 GeV were analysed combining the methods developed in previous searches at lower energies. No evidence for the production of these supersymmetric particles was found. Hence, limits were derived at 95% confidence level.Comment: 31 pages, 14 figure

    The midgut transcriptome of Phlebotomus (Larroussius) perniciosus, a vector of Leishmania infantum: comparison of sugar fed and blood fed sand flies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Parasite-vector interactions are fundamental in the transmission of vector-borne diseases such as leishmaniasis. <it>Leishmania </it>development in the vector sand fly is confined to the digestive tract, where sand fly midgut molecules interact with the parasites. In this work we sequenced and analyzed two midgut-specific cDNA libraries from sugar fed and blood fed female <it>Phlebotomus perniciosus </it>and compared the transcript expression profiles.</p> <p>Results</p> <p>A total of 4111 high quality sequences were obtained from the two libraries and assembled into 370 contigs and 1085 singletons. Molecules with putative roles in blood meal digestion, peritrophic matrix formation, immunity and response to oxidative stress were identified, including proteins that were not previously reported in sand flies. These molecules were evaluated relative to other published sand fly transcripts. Comparative analysis of the two libraries revealed transcripts differentially expressed in response to blood feeding. Molecules up regulated by blood feeding include a putative peritrophin (<it>PperPer1</it>), two chymotrypsin-like proteins (<it>PperChym1 </it>and <it>PperChym2</it>), a putative trypsin (<it>PperTryp3</it>) and four putative microvillar proteins (<it>PperMVP1</it>, <it>2</it>, <it>4 </it>and <it>5</it>). Additionally, several transcripts were more abundant in the sugar fed midgut, such as two putative trypsins (<it>PperTryp1 </it>and <it>PperTryp2</it>), a chymotrypsin (<it>PperChym3</it>) and a microvillar protein (<it>PperMVP3</it>). We performed a detailed temporal expression profile analysis of the putative trypsin transcripts using qPCR and confirmed the expression of blood-induced and blood-repressed trypsins. Trypsin expression was measured in <it>Leishmania infantum</it>-infected and uninfected sand flies, which identified the <it>L. infantum</it>-induced down regulation of <it>PperTryp3 </it>at 24 hours post-blood meal.</p> <p>Conclusion</p> <p>This midgut tissue-specific transcriptome provides insight into the molecules expressed in the midgut of <it>P. perniciosus</it>, an important vector of visceral leishmaniasis in the Old World. Through the comparative analysis of the libraries we identified molecules differentially expressed during blood meal digestion. Additionally, this study provides a detailed comparison to transcripts of other sand flies. Moreover, our analysis of putative trypsins demonstrated that <it>L. infantum </it>infection can reduce the transcript abundance of trypsin <it>PperTryp3 </it>in the midgut of <it>P. perniciosus</it>.</p
    • 

    corecore