3,769 research outputs found
Comment on: "Estimating the Hartree-Fock limit from finite basis set calculations" [Jensen F (2005) Theor Chem Acc 113:267]
We demonstrate that a minor modification of the extrapolation proposed by
Jensen [(2005): Theor Chem Acc 113:267] yields very reliable estimates of the
Hartree-Fock limit in conjunction with correlation consistent basis sets.
Specifically, a two-point extrapolation of the form
yields HF limits
with an RMS error of 0.1 millihartree using aug-cc-pVQZ and
aug-cc-pV5Z basis sets, and of 0.01 millihartree using aug-cc-pV5Z and
aug-cc-pV6Z basis sets.Comment: Theoretical Chemistry Accounts, in pres
Linearized stability analysis of gravastars in noncommutative geometry
In this work, we find exact gravastar solutions in the context of
noncommutative geometry, and explore their physical properties and
characteristics. The energy density of these geometries is a smeared and
particle-like gravitational source, where the mass is diffused throughout a
region of linear dimension due to the intrinsic uncertainty
encoded in the coordinate commutator. These solutions are then matched to an
exterior Schwarzschild spacetime. We further explore the dynamical stability of
the transition layer of these gravastars, for the specific case of
, where M is the black hole mass, to linearized
spherically symmetric radial perturbations about static equilibrium solutions.
It is found that large stability regions exist and, in particular, located
sufficiently close to where the event horizon is expected to form.Comment: 6 pages, 3 figure
Age-related differences in adaptation during childhood: The influences of muscular power production and segmental energy flow caused by muscles
Acquisition of skillfulness is not only characterized by a task-appropriate application of muscular forces but also by the ability to adapt performance to changing task demands. Previous research suggests that there is a different developmental schedule for adaptation at the kinematic compared to the neuro-muscular level. The purpose of this study was to determine how age-related differences in neuro-muscular organization affect the mechanical construction of pedaling at different levels of the task. By quantifying the flow of segmental energy caused by muscles, we determined the muscular synergies that construct the movement outcome across movement speeds. Younger children (5-7 years; n = 11), older children (8-10 years; n = 8), and adults (22-31 years; n = 8) rode a stationary ergometer at five discrete cadences (60, 75, 90, 105, and 120 rpm) at 10% of their individually predicted peak power output. Using a forward dynamics simulation, we determined the muscular contributions to crank power, as well as muscular power delivered to the crank directly and indirectly (through energy absorption and transfer) during the downstroke and the upstroke of the crank cycle. We found significant age × cadence interactions for (1) peak muscular power at the hip joint [Wilks' Lambda = 0.441, F(8,42) = 2.65, p = 0.019] indicating that at high movement speeds children produced less peak power at the hip than adults, (2) muscular power delivered to the crank during the downstroke and the upstroke of the crank cycle [Wilks' Lambda = 0.399, F(8,42) = 3.07, p = 0.009] indicating that children delivered a greater proportion of the power to the crank during the upstroke when compared to adults, (3) hip power contribution to limb power [Wilks' Lambda = 0.454, F(8,42) = 2.54, p = 0.023] indicating a cadence-dependence of age-related differences in the muscular synergy between hip extensors and plantarflexors. The results demonstrate that in spite of a successful performance, children construct the task of pedaling differently when compared to adults, especially when they are pushed to their performance limits. The weaker synergy between hip extensors and plantarflexors suggests that a lack of inter-muscular coordination, rather than muscular power production per se, is a factor that limits children's performance ranges
Stellar Disk Truncations: Where do we stand ?
In the light of several recent developments we revisit the phenomenon of
galactic stellar disk truncations. Even 25 years since the first paper on outer
breaks in the radial light profiles of spiral galaxies, their origin is still
unclear. The two most promising explanations are that these 'outer edges'
either trace the maximum angular momentum during the galaxy formation epoch, or
are associated with global star formation thresholds. Depending on their true
physical nature, these outer edges may represent an improved size
characteristic (e.g., as compared to D_25) and might contain fossil evidence
imprinted by the galaxy formation and evolutionary history. We will address
several observational aspects of disk truncations: their existence, not only in
normal HSB galaxies, but also in LSB and even dwarf galaxies; their detailed
shape, not sharp cut-offs as thought before, but in fact demarcating the start
of a region with a steeper exponential distribution of starlight; their
possible association with bars; as well as problems related to the
line-of-sight integration for edge-on galaxies (the main targets for truncation
searches so far). Taken together, these observations currently favour the
star-formation threshold model, but more work is necessary to implement the
truncations as adequate parameters characterising galactic disks.Comment: LaTeX, 10 pages, 6 figures, presented at the "Penetrating Bars
through Masks of Cosmic Dust" conference in South Africa, proceedings
published by Kluwer, and edited by Block, D.L., Freeman, K.C., Puerari, I., &
Groess, R; v3 to match published versio
Psychological principles of successful aging technologies: A mini-review
Based on resource-oriented conceptions of successful life-span development, we propose three principles for evaluating assistive technology: (a) net resource release; (b) person specificity, and (c) proximal versus distal frames of evaluation. We discuss how these general principles can aid the design and evaluation of assistive technology in adulthood and old age, and propose two technological strategies, one targeting sensorimotor and the other cognitive functioning. The sensorimotor strategy aims at releasing cognitive resources such as attention and working memory by reducing the cognitive demands of sensory or sensorimotor aspects of performance. The cognitive strategy attempts to provide adaptive and individualized cuing structures orienting the individual in time and space by providing prompts that connect properties of the environment to the individual's action goals. We argue that intelligent assistive technology continuously adjusts the balance between `environmental support' and `self-initiated processing' in person-specific and aging-sensitive ways, leading to enhanced allocation of cognitive resources. Furthermore, intelligent assistive technology may foster the generation of formerly latent cognitive resources by activating developmental reserves (plasticity). We conclude that `lifespan technology', if co-constructed by behavioral scientists, engineers, and aging individuals, offers great promise for improving both the transition from middle adulthood to old age and the degree of autonomy in old age in present and future generations. Copyright (C) 2008 S. Karger AG, Basel
Maternal effects on anogenital distance in a wild marmot population
Peer reviewedPublisher PD
A deeply branching thermophilic bacterium with an ancient acetyl-CoA pathway dominates a subsurface ecosystem
<div><p>A nearly complete genome sequence of <em>Candidatus</em> ‘Acetothermum autotrophicum’, a presently uncultivated bacterium in candidate division OP1, was revealed by metagenomic analysis of a subsurface thermophilic microbial mat community. Phylogenetic analysis based on the concatenated sequences of proteins common among 367 prokaryotes suggests that <em>Ca.</em> ‘A. autotrophicum’ is one of the earliest diverging bacterial lineages. It possesses a folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO<sub>2</sub> fixation, is predicted to have an acetogenic lifestyle, and possesses the newly discovered archaeal-autotrophic type of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase. A phylogenetic analysis of the core gene cluster of the acethyl-CoA pathway, shared by acetogens, methanogens, some sulfur- and iron-reducers and dechlorinators, supports the hypothesis that the core gene cluster of <em>Ca.</em> ‘A. autotrophicum’ is a particularly ancient bacterial pathway. The habitat, physiology and phylogenetic position of <em>Ca.</em> ‘A. autotrophicum’ support the view that the first bacterial and archaeal lineages were H<sub>2</sub>-dependent acetogens and methanogenes living in hydrothermal environments.</p> </div
- …