56 research outputs found

    Neuroanatomical Abnormalities in Violent Individuals with and without a Diagnosis of Schizophrenia

    Get PDF
    Several structural brain abnormalities have been associated with aggression in patients with schizophrenia. However, little is known about shared and distinct abnormalities underlying aggression in these subjects and non-psychotic violent individuals. We applied a region-of interest volumetric analysis of the amygdala, hippocampus, and thalamus bilaterally, as well as whole brain and ventricular volumes to investigate violent (n = 37) and non-violent chronic patients (n = 26) with schizophrenia, non-psychotic violent (n = 24) as well as healthy control subjects (n = 24). Shared and distinct volumetric abnormalities were probed by analysis of variance with the factors violence (non-violent versus violent) and diagnosis (non-psychotic versus psychotic), adjusted for substance abuse, age, academic achievement and negative psychotic symptoms. Patients showed elevated vCSF volume, smaller left hippocampus and smaller left thalamus volumes. This was particularly the case for non-violent individuals diagnosed with schizophrenia. Furthermore, patients had reduction in right thalamus size. With regard to left amygdala, we found an interaction between violence and diagnosis. More specifically, we report a double dissociation with smaller amygdala size linked to violence in non-psychotic individuals, while for psychotic patients smaller size was linked to non-violence. Importantly, the double dissociation appeared to be mostly driven by substance abuse. Overall, we found widespread morphometric abnormalities in subcortical regions in schizophrenia. No evidence for shared volumetric abnormalities in individuals with a history of violence was found. Finally, left amygdala abnormalities in non-psychotic violent individuals were largely accounted for by substance abuse. This might be an indication that the association between amygdala reduction and violence is mediated by substance abuse. Our results indicate the importance of structural abnormalities in aggressive individuals

    Violent aggression predicted by multiple pre-adult environmental hits

    Get PDF
    Early exposure to negative environmental impact shapes individual behavior and potentially contributes to any mental disease. We reported previously that accumulated environmental risk markedly decreases age at schizophrenia onset. Follow-up of matched extreme group individuals (≤1 vs. ≥3 risks) unexpectedly revealed that high-risk subjects had >5 times greater probability of forensic hospitalization. In line with longstanding sociological theories, we hypothesized that risk accumulation before adulthood induces violent aggression and criminal conduct, independent of mental illness. We determined in 6 independent cohorts (4 schizophrenia and 2 general population samples) pre-adult risk exposure, comprising urbanicity, migration, physical and sexual abuse as primary, and cannabis or alcohol as secondary hits. All single hits by themselves were marginally associated with higher violent aggression. Most strikingly, however, their accumulation strongly predicted violent aggression (odds ratio 10.5). An epigenome-wide association scan to detect differential methylation of blood-derived DNA of selected extreme group individuals yielded overall negative results. Conversely, determination in peripheral blood mononuclear cells of histone-deacetylase1 mRNA as 'umbrella mediator' of epigenetic processes revealed an increase in the high-risk group, suggesting lasting epigenetic alterations. Together, we provide sound evidence of a disease-independent unfortunate relationship between well-defined pre-adult environmental hits and violent aggression, calling for more efficient prevention

    Chlamydia trachomatis Infection and Anti-Hsp60 Immunity: The Two Sides of the Coin

    Get PDF
    Chlamydia trachomatis (CT) infection is one of the most common causes of reproductive tract diseases and infertility. CT-Hsp60 is synthesized during infection and is released in the bloodstream. As a consequence, immune cells will produce anti-CT-Hsp60 antibodies. Hsp60, a ubiquitous and evolutionarily conserved chaperonin, is normally sequestered inside the cell, particularly into mitochondria. However, upon cell stress, as well as during carcinogenesis, the chaperonin becomes exposed on the cell surface (sf-Hsp60) and/or is secreted from cells into the extracellular space and circulation. Reports in the literature on circulating Hsp and anti-Hsp antibodies are in many cases short on details about Hsp60 concentrations, and about the specificity spectra of the antibodies, their titers, and their true, direct, pathogenetic effects. Thus, more studies are still needed to obtain a definitive picture on these matters. Nevertheless, the information already available indicates that the concurrence of persistent CT infection and appearance of sf-Hsp60 can promote an autoimmune aggression towards stressed cells and the development of diseases such as autoimmune arthritis, multiple sclerosis, atherosclerosis, vasculitis, diabetes, and thyroiditis, among others. At the same time, immunocomplexes composed of anti-CT-Hsp60 antibodies and circulating Hsp60 (both CT and human) may form deposits in several anatomical locations, e.g., at the glomerular basal membrane. The opposite side of the coin is that pre-tumor and tumor cells with sf-Hsp60 can be destroyed with participation of the anti-Hsp60 antibody, thus stopping cancer progression before it is even noticed by the patient or physician

    Hsp60 chaperonopathies and chaperonotherapy: targets and agents.

    Get PDF

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe

    Gebruik van systemische corticosteroïden bij kinderen

    No full text

    Gebruik van systemische corticosteroïden bij kinderen

    No full text
    corecore