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Abstract

Several structural brain abnormalities have been associated with aggression in patients with

schizophrenia. However, little is known about shared and distinct abnormalities underlying

aggression in these subjects and non-psychotic violent individuals. We applied a region-of-

interest volumetric analysis of the amygdala, hippocampus, and thalamus bilaterally, as well

as whole brain and ventricular volumes to investigate violent (n = 37) and non-violent chronic

patients (n = 26) with schizophrenia, non-psychotic violent (n = 24) as well as healthy control

subjects (n = 24). Shared and distinct volumetric abnormalities were probed by analysis of

variance with the factors violence (non-violent versus violent) and diagnosis (non-psychotic

versus psychotic), adjusted for substance abuse, age, academic achievement and negative

psychotic symptoms. Patients showed elevated vCSF volume, smaller left hippocampus

and smaller left thalamus volumes. This was particularly the case for non-violent individuals

diagnosed with schizophrenia. Furthermore, patients had reduction in right thalamus size.

With regard to left amygdala, we found an interaction between violence and diagnosis. More

specifically, we report a double dissociation with smaller amygdala size linked to violence in

non-psychotic individuals, while for psychotic patients smaller size was linked to non-vio-

lence. Importantly, the double dissociation appeared to be mostly driven by substance

abuse. Overall, we found widespread morphometric abnormalities in subcortical regions in

schizophrenia. No evidence for shared volumetric abnormalities in individuals with a history

of violence was found. Finally, left amygdala abnormalities in non-psychotic violent individu-

als were largely accounted for by substance abuse. This might be an indication that the
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association between amygdala reduction and violence is mediated by substance abuse.

Our results indicate the importance of structural abnormalities in aggressive individuals.

Introduction

There is a growing interest to further our understanding of violence and aggression in patients

with severe mental illness. Violent behavior is a public health concern, and there is evidence of

increased rates of violence in patients with schizophrenia [1–3]. Although violence is deter-

mined by multiple factors, emerging evidence suggests that emotional regulation, the ability to

modulate one’s state or behavior in a given situation plays an important role in aggressive

behavior [4–6]. Here, we investigate brain structures associated with emotional regulation

comparing schizophrenia patients with (VS) and without a history of violence (NVS) as well as

non-psychotic violent individuals (NPV) to delineate neuroanatomical abnormalities linked to

psychosis and aggression.

Converging evidence from focal brain lesion studies [7], functional imaging [5, 8] and neu-

rotransmitter functioning [9–11] in aggressive individuals implicates the amygdala in the etiol-

ogy of violence, with the amygdala considered a key structure in several neurobiological

models of violence [12–14]. For example, the Siever model [14] proposes that violence and

aggression occur when amygdala-mediated affective responses are not inhibited, and this lack

of inhibition prevents the impulsive drive from being constrained. Deficits in inhibition, along

with perceived urgency and difficulties in self-regulation associated with prefrontal cortex dys-

function increase the risk of violence [15–18].

Studies of patients with schizophrenia have shown aberrant brain structures and functions

in limbic and frontal regions. The hippocampus and whole brain volume are consistently

found to be reduced in volume in patients with schizophrenia [19–23], particularly so in

patients with a history of violence [24–27]. Applying resting-state functional magnetic reso-

nance imaging (fMRI), Hoptman and colleagues [28] showed reduced functional connectivity

(FC) between the amygdala and ventral prefrontal regions in patients with schizophrenia, with

lower connectivity associated with higher levels of self-rated aggression. Recently, we used

event-related brain potentials to show a delay of approximate 150 millisecond in sensory-per-

ceptual responses to emotionally salient stimuli in schizophrenia patients with a history of vio-

lence relative to their non-violent peers [29]. Given this deficit is related to the processing of

negatively valenced stimuli, aberrant amygdala functioning must be considered. Hence, there

is consistent evidence of aberrant brain functions linked to emotional regulation and its role in

aggression.

Interestingly, structural imaging studies of the amygdala in violent patients with schizo-

phrenia have yielded mixed results. One early study found temporal lobe volume reduction in

violent patients [30] in contrast to more recent work [24–26, 31]. Barkataki and colleagues

[24] found that non-violent patients showed amygdala reductions relative to healthy controls

and violent patients, but differences between patient groups were lost after controlling for pos-

itive symptoms. Similar results were reported in two more investigations with amygdala reduc-

tions seen in non-violent patients [25, 26]. One of the studies also reported a weak trend

towards a reduction in violent patients compared to healthy controls [25]. All the above studies

unfortunately are characterized by small sample sizes (ranging from 10 to 13 for violent

patients), which might contribute to these inconsistent findings. Considering the rather robust

functional evidence implicating amygdala in aggression, further structural studies with larger

sample sizes are clearly warranted.
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The relationship between amygdala reduction and violence appears to be somewhat more

consistent in non-clinical samples, which raises the important question about differential neu-

ronal contributions to violence. Using the symptom check list to confirm the absence of psy-

chiatric disorders (SCL-90-R)[32], Matthies and colleagues classified individuals as aggressive

based on their Lifetime History of Aggression score (LHA > 5)[33]. They reported smaller

bilateral amygdala volumes in aggressive individuals. Lending support to the specificity of

their findings, amygdala size correlated with LHA scores, but not with other clinical measures

looking at general psychopathology, anxiety, and depression. Similar results were reported by

Bobes Leon et al [34] applying the Reactive and Proactive Aggression Questionnaire [35] to

measure aggressiveness in adult men. Amygdala size was found to be smaller in the violent

group and negatively correlated with trait scores of reactive aggression. Notably, total score on

the psychopathy checklist for the violent group at 10.6 was far below the commonly used cut-

off score of 25 for psychopathy [36]. In a recent longitudinal study, amygdala volumes mea-

sured at 26 years of age were associated with psychopathic features and levels of aggression

measured in youth. Yet, group volumetric differences between adult individuals with a history

of chronic, transient, and no serious violence were not significant [37].

Investigations on the issue of violence in schizophrenia have produced promising results,

but studies with small sample size and inclusion of comorbid disorders [24–26, 31] make inter-

pretation of volumetric changes less clear. Including a non-psychotic, violent sample without a

history of any major Axis I disorder, or any current substance abuse problems will help distin-

guish neuroanatomical abnormalities associated with aggression and psychosis.

Methods

Participants

Region of interest (ROI) analysis for non-violent patients with schizophrenia (NVS; n = 26),

violent patients with schizophrenia (VS; n = 37), non-psychotic, violent participants (NPV;

n = 24), and healthy control participants (HC; n = 24) were carried out (for list of abbreviations

see Table 1). All participants, as reported in our previous studies using the same participants

[29, 38], had no significant co-morbid medical, psychiatric, or neurological illnesses. Partici-

pants with any history of drug or alcohol dependence were excluded, along with any recent

Table 1. Abbreviations.

Healthy Controls HC

Nonviolent patients with schizophrenia NVS

Violent patients with schizophrenia VS

Non-psychotic violent participants NPV

Whole Brain Volume WBV

Ventricular Cerebrospinal Fluid vCSF

Positive and Negative Syndrome Scale PANSS

PANSS General Score panGS

PANSS Total Score panTS

PANSS Positive Score panPS

PANSS Negative Score panNS

Substance Abuse Disorder SUD

Wide Range Achievement Test WRAT-4

Life History of Aggression LHA

Barratt Impulsiveness Scale-11 BIS-11

doi:10.1371/journal.pone.0168100.t001
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drug or alcohol abuse occurring 6 months or less to their participation in the study. The struc-

tured clinical interview for DSM-IV-TR disorders (SCID-IV DSM-IV-TR)[39, 40] was used

for diagnostic purposes for all four groups, including the confirmation that our HC and NPV

participants did not meet criteria for any Axis 1 psychiatric disorders. The patient population

was recruited from the Rockland Psychiatric Center (Rockland, NY). In particular, patients

were recruited from the Nathan S. Kline Institute (NKI) inpatient facilities, as well as outpa-

tient centers in New York State. Non-patient participants were recruited from the volunteer

recruitment pool at NKI. Informed written consent was obtained from all participants. NKI

IRB approved consent forms were used for this process. The experimental protocol was

approved by the institutional review board at NKI and is compliant with the tenets set forth in

the Declaration of Helsinki.

Clinical Assessment

The Life History of Aggression (LHA) [41] form was completed for all participants to help

determine grouping (e.g. violent or non-violent). Participants report during interview, avail-

able official criminal records ("Record of Arrest and Prosecution"), staff interviews, and chart

review was used to complete the LHA. The LHA scale has strong inter-rater and test-retest reli-

ability, good internal consistency, and is considered a valid measure of overt aggression [41].

Scores� 20 on the LHA, plus a confirmed episode of physical assault in the past year, in con-

junction with a score� 3 on the "Physical Aggression Against People" (PA-people) subscale,

met criteria for inclusion in the two violent groups (e.g. VS and NPV). To be included in the

non-violent group, there could be no evidence of a physical assault within the past year, or any

lifetime episodes of severe physical aggression, accompanied with a score� 15 on the LHA,

and� 2 on the PA-people. This study used the same inclusion and exclusion criteria found in

our previous studies [29, 38].

The Buss-Perry Aggression Questionnaire [42], is a 29-item measure, comprised of four

dimensions (physical aggression, verbal aggression, hostility, and anger). There is moderate to

high internal consistency, with stable test-retest scores over 7 months, and it has good conver-

gent validity, although there is a moderate negative relationship with social desirability [43].

The Barratt Impulsiveness Scale (BIS-11) [44] is a widely used measure of impulsive person-

ality traits that is multi-dimensional with strong internal consistency, test-retest reliability, and

convergent validity [45].

The Wide Range Achievement Test–Fourth Edition, Reading Subtest (WRAT-4) was used

to estimate academic achievement skills and IQ [46]. Age-adjusted T-scores were used for all

analyses.

The Positive and Negative Syndrome Scale for Schizophrenics (PANSS) [47] was used to

help characterize the schizophrenia patient population. The PANSS has been found to have

good psychometric properties with no inter-correlation between the negative and positive

scales suggesting separate dimensions of psychopathology [47, 48]. Only patients with schizo-

phrenia were administered the PANSS.

Neuroimaging Acquisition and Data Processing

T1-weighted magnetic resonance (MR) images were acquired with a 1.5T Siemens Vision

scanner (Erlangen, Germany) at the NKI Center for Advanced Brain Imaging (Orangeburg,

NY), which was equipped with a 30.5-cm i.d. three-axis local gradient coil and an end-capped

quadrature birdcage radio-frequency coil. All participants were scanned with the following

high-resolution T1-weighted magnetization prepared rapidly acquired gradient echo
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(MPRAGE) parameters: TR = 11.6 ms, TE = 4.9 ms, flip angle 8˚, FOV = 300 mm, matrix =

256x256, slice thickness = 1.2 mm isotropic voxels, and 172 sagittal slices.

Individual volumes were concatenated using AFNI (to3d function; NIMH Bethesda, MD,

USA, http://afni.nimh.nih.gov/afni/) to create a single 3D MRI image per participant, prior to

using FSL (FMRIB—Oxford; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) for segmentation. An auto-

matic approach to the segmentation of subcortical structures, called FIRST was used [49, 50]

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST). A benefit of using an automated approach is that

manual segmentation is time consuming, since it requires the accurate demarcation of struc-

tures and associated anatomical landmarks. Automated packages, such as FIRST, can reliably

segment volumes in a fraction of the time, and does not require expert neuroanatomists to

manually draw masks. FIRST has the capabilities to automatically delineate and segment sub-

cortical structures using a Bayesian based model that creates surface meshes on sub-cortical

structures. A large training data-set of 336 T1-weighted MR images from the Center for Mor-

phometric Analysis (CMA; Massachusetts General Hospital, Boston, USA) was used to manu-

ally segment 15 structures [50]. Among those structures were the left and right amygdala,

hippocampus, and thalamus. As part of the subcortical segmentation to MNI space, FIRST

applies a 12 degrees of freedom affine registration of the T1 image to the FSL FIRST training

library, followed by a second 12 degree of freedom registration using an MNI subcortical mask

to ensure voxels outside of the regions of interest are not incorrectly included in the volumes.

In addition to utilizing FIRST, the cross-sectional version of SIENA ("Structural Image

Evaluation using Normalization of Atrophy") called SIENAX was used to estimate whole

brain tissue volume from a single T1-weighted image. The process segments brain tissue

from non-brain tissue [51, 52] before the brain is affine-registered to MNI152 space [53,

54]. Both, the normalized (e.g. MNI 152) and unnormalized (native) values are provided

as outputs. This approach also extracts the grey and white matter, peripheral grey matter,

and ventricular cerebrospinal fluid (vCSF) volumes using a partial volume estimation

approach [55]. Since FIRST uses linear and non-linear transformations to normalize brain

tissue prior to segmentation, we used the normalized values for WBV and vCSF for our

analyses. SIENAX has been validated to differentiate clinical groups from a single time-

point, with a 0.5–1% brain volume accuracy for SIENAX measures, compared with longi-

tudinal SIENA brain volume change error of 0.15% [56]. It has been found that the estima-

tion of the normalized brain volume accuracy of SIENAX is closely correlated with the

SIENA measure [57]. vCSF volume was used as a proxy to measure ventricular size in our

current study.

Statistical analyses were carried out using SPSS (IBM SPSS Statistics Version 20). Statis-

tical outliers were excluded from analysis if their ROI volume was 2.5 or more standard

deviations from the mean. Prior to excluding any outliers, T1-weighted MRI and the seg-

mentation output quality were first verified. If the segmentation did not occur correctly, it

was re-processed to ensure that an error did not occur during the segmentation. In this

study, there were no segmentation errors. Due to motion artifact on T1-weighted MR

images and significant statistical outliers we excluded six participants in total from the

analysis (2 HCs, 1 VS, 1 NVS, and 2 NPV). To determine shared and distinct volumetric

abnormalities, we applied analysis of variance (ANOVA) to test main and interactive

effects between factors violence (non-violent versus violent) and diagnosis (non-psychotic

versus psychotic). ANOVA was adjusted for substance abuse, age, academic achievement

and negative psychotic symptoms. Bonferroni was used to correct for multiple post hoc

pairwise comparisons.
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Results

Demographic and Clinical Variables

Demographic statistics are reported in Table 2. No difference in gender was observed between

the groups, with the sample being largely comprised of men. No difference was also seen in

medication dose, as measured using chlorpromazine equivalency values. Chlorpromazine

equivalents were calculated following the guidelines published in [58]. The percentage of atypi-

cal and typical antipsychotic medication was 70% and 30%, respectively. There was a signifi-

cant difference in age among groups (F3,107 = 2.94, p = .036), with NVS, older compared to

HC, VS, and NPV. Groups also differed in years of education (F3, 109 = 10.7, p< .001), with HC

having spent more years at school than VS, NPV, and NVS. Age at first hospitalization did not

differ between the VS and NVS (t57 = 0.799, p = .428), although the duration of illness was lon-

ger for the NVS group than the VS group (t56 = 2.30, p = .025). Differences were also observed

for WRAT-4 performances across groups (F3,106 = 3.82, p = .012), with HC participants obtain-

ing higher achievement scores than the other three groups. Age and WRAT-4 were used as

covariates in all subsequent ROI analysis, along with substance abuse disorder.

Additionally, we saw group differences on the Buss-Perry Questionnaire Total Score

(BPAQ; F3,107 = 10.05, p< .001). BPAQ total scores were higher in VS and NPV relative to HC

and NVS. For the physical aggression subscale of the BPAQ, NPV participants scored higher

Table 2. Demographic and clinical data.

HC NVS VS NPV f/chi/t value P-value

N 24 26 37 24 - -

Gender: male/female 19/5 20/6 31/7 23/1 10.03 .124

Age (s.e.m.) 30.04 (2.1) 43.08 (1.9) 35.3 (1.6) 38.8 (2.1) 2.94 .036*

Age of first hospitalization – 23.94 (6.62) 22.09 (9.37) – .799 .428

Illness Duration – 19.79 (1.89) 13.79 (1.73) – 2.30 .025*

Education in years 14.6 (0.4) 13.2 (0.4) 11.7 (0.3) 12.4(0.4) 10.70 .000 ***

Medication dose (CPZ equivalents) – 1343.7 (687.4) 1230.6 (637.8) – 0.65 .52

Substance Abuse 2/24 5/26 18/37 14/24 20.011 .000***

WRAT-4 50.3 (1.8) 42.1 (2.1) 45.1(1.2) 43.2 (2.1) 3.82 .012*

LHA Total 13.83 (1.31) 10.28 (.97) 25.61 (.98) 33.13 (1.18) 64.23 .000***

Barratt Impulsivity 55.13 (1.79) 61.27 (2.49) 62.31 (1.85) 65.92 (2.14) 4.12 .008*

Buss-Perry Total 56.46 (2.71) 63.89 (4.23) 77.12 (3.00) 85.17 (5.58) 10.05 .000***

Buss-Perry Physical 15.38 (1.02) 15.64 (1.39) 22.25 (1.19) 26.52 (1.90) 14.02 .000***

Buss-Perry Verbal 13.13 (.86) 11.88 (.94) 14.12 (.83) 16.33 (1.03) 3.89 .011*

Buss-Perry Anger 11.71 (.60) 14.35 (1.07) 18.21 (1.08) 21.54 (1.88) 11.35 .000***

Buss-Perry Hostility 16.13 (1.14) 20.96 (1.66) 22.03 (.94) 21.33 (1.56) 3.99 .01*

panTT – 78.5 (14.2) 79.1 (12.9) – -0.17 .866

panGS - 38.7 (1.5) 40.5 (1.2) - .89 .349

panPS – 18.7 (5.4) 20.68 (6.4) – -1.28 .21

panNG – 21.1 (5.3) 17.89 (5.4) – 2.27 .027 *

ANOVA or t-test for continuous and chi-square test for categorical variables.

* P� 0.05

** P� 0.001

*** P �.0001.

S.E.M. = standard error of mean; S.E.M. are the values in parenthesis; CPZ = chlorpromazine; panTT = PANSS Total Score; panGS = PANSS General

Score; panPS = PANSS Positive Score; panNG = PANSS Negative Score; LHA = Life History of Aggression

doi:10.1371/journal.pone.0168100.t002
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than VS, and both violent groups reported more physical aggression than NVS and HC. For

the verbal aggression subscale of the BPAQ, NPV participants scored higher than HC and

NVS. Differences between VS and the other three groups did not reach significance. Further-

more, VS and NPV participants scored higher on anger than NVS and HC. Finally, on the hos-

tility subscale, VS, NPV, and NVS participants scored higher than HC. There were no

differences between NPV, VS, and NVS groups.

Life history of aggression scores also differed between the four groups (F3, 108 = 67.49, p<
.001). The NPV group was more violent than the VS group, with both of these groups scoring

higher on the LHA than both the NVS and HC groups. HC participants had elevated LHA

scores relative to the NVS group.

There was a main effect of group (F3, 108 = 3.28, p = .024) for Barrett’s Impulsivity Index.

Follow-up pair-wise comparisons revealed increased impulsivity in VS and NPV groups rela-

tive to HC participants. The NVS group did not differ from the HC group, or the two violent

groups.

NVS and VS did not differ in PANSS total scores, general scores, or positive symptoms.

However, NVS scored significantly higher on negative symptoms (t59 = 2.27, p = 0.02). For this

reason, a secondary analysis looking at the effect of negative symptoms as a contributing factor

to ROI volume was conducted.

Region of Interest Volumetric Analysis

Fig 1 illustrates brain regions investigated in our study mapped onto a participant’s brain.

Fig 1. T1-weighted MRI ROI FIRST masks.

doi:10.1371/journal.pone.0168100.g001
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Table 3 lists mean volumes of investigated brain regions for each of the four groups.

Whole Brain Volume. The ANOVA for WBV revealed no significant main and interac-

tive effects.

Fig 2 illustrates the effects of violence and diagnosis on brain region volumes.

Left and Right Amygdala. The ANOVA for left amygdala indicated a trend towards a

main effect for diagnosis (F1,109 = 3.89, p = .051). For the right amygdala, a significant interac-

tion between diagnosis and violence was found (F1,109 = 5.3, p = .023). However, only a trend

towards an interaction was observed after including substance abuse as a covariate (F1,109 =

3.679, p = .05). The interaction appeared to be driven by a double dissociation between factors,

with decreased volume in NPV relative to HC and increased volume in VS relative to NVS.

Bonferroni corrected post hoc pairwise comparison using independent samples t-test revealed

no differences between groups.

Table 4 lists results obtained by analysis of variance.

Left and Right Hippocampus. For the left hippocampus volume, there was a main effect

of diagnosis (F1,109 = 4.08, p = 0.04) with reduction seen for patients with schizophrenia. There

was also an interaction between diagnosis and violence (F1,109 = 5.46, p = 0.02). Corrected post

hoc pairwise comparisons revealed a group difference between NVS and HC (p = .026) for left

hippocampal volume. No effects were found for the right hippocampus.

Left and Right Thalamus. For both left and right thalamus, ANOVA revealed a main

effect for diagnosis (LT: F1,109 = 11.12, p = 0.001; RT: F1,109 = 7.69, p = 0.007) with reduction

seen in patients with schizophrenia. Furthermore, a significant interaction between diagnosis

and violence was observed for the left thalamus (F1,109 = 8.35, p = 0.005). Post hoc pairwise

comparisons revealed a group difference between NVS and HC (p< .001).

Ventricular Cerebrospinal Fluid. Due to issues of skewness, vCSF was transformed

using a natural log to approximate a Gaussian distribution. Analysis indicated a main effect for

diagnosis (F1,109 = 27.88, p = 0.001) with increased vCSF volume for patients with schizophre-

nia. Furthermore, there was a significant interaction between diagnosis and violence (F1,109 =

5.82, p = 0.01). Post hoc pairwise comparisons revealed increased volume in NVS (p< .001)

and VS (p = .008) relative to HC, as well as increased volume in NVS relative to NPV (p =

.002).

The Role of Negative Symptoms and Medication. Here the analysis was limited to

patients with a diagnosis of schizophrenia to investigate the potential role of several factors,

such as medication, negative symptoms, and illness duration on gray matter volume loss. As

indicated in Table 2, there was no group difference for CPZ equivalent. Further, CPZ equiva-

lent did not correlate with WBV (p = .79), vCSF (p = .26), left amygdala (p = .43), left

Table 3. Adjusted means and standard deviations of the means for ROI.

ROI HC NVS VS NPV

WBV 1610692.14 (118229.65) 1548997.75 (91300.21) 1581467.20 (115945.47) 1562300.89 (79828.58)

Left Amygdala 1290.66 (140.28) 1175.94 (157.60) 1178.25 (241.31) 1218.96 (217.27)

Right Amygdala 1262.81 (139.73) 1128.31 (205.87) 1207.84 (225.95) 1146.76 (304.54)

Left Hippocampus 3669.73 (352.87) 3279.93 (429.43) 3377.83 (426.97) 3328.55 (482.18)

Right Hippocampus 3803.58 (352.95) 3475.02 (321.14) 3557.10 (432.39) 3536.09 (438.81)

Left Thalamus 8345.42 (543.65) 7623.46 (408.86) 8033.83 (640.98) 8034.02 (689.26)

Right Thalamus 8127.71 (618.99) 7559.44 (652.40) 7757.86 (749.18) 7897.09 (653.89)

vCSF 10.59 (0.048) 10.63 (0.05) 10.94 (0.052) 10.75 (0.038)

Adjusted means (S.D.) reported in mm3. All ROIs were adjusted for age, substance abuse, and WRAT-4 T-scores.

doi:10.1371/journal.pone.0168100.t003
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Fig 2. ROI mean volumes for each group. Vertical error bars indicate standard error of the mean.

doi:10.1371/journal.pone.0168100.g002
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hippocampus (p = .71), left thalamus (p = .84), right amygdala (p = .93), right hippocampus

(p = .94), or right thalamus (p = .87) volumes. CPZ equivalent values were therefore not added

as a covariate. Groups did differ on age, academic achievement, substance use, as well as nega-

tive symptoms, and these variables were therefore included as covariates in our analysis. For

this subsample analysis including only patients with schizophrenia, significant differences

between patients with and without a history of violence were only found for vCSF with

increased volume seen for NVS (F1,59 = 4.63, p = 0.03).

Discussion

We set out to investigate structural characteristics in schizophrenia patients with and without

a history of violence, and compare them to non-psychotic violent and healthy control individ-

uals. Our goals were two-fold, to probe for volumetric abnormalities linked to aggression and

to determine possible differences of such abnormalities between aggressive individuals with

and without psychotic disorder. One particular interest pertained to amygdala volume as there

are somewhat conflicting results implicating this region in violence. Out of four studies [24,

26, 30, 31], only one reported an association between amygdala reduction and violence in

patients with schizophrenia. At the same time, decreased amygdala volume has been linked to

a variety of mental disorders characterized by high aggression, including conduct disorder

[59]; for a recent meta-analysis see [60] and psychopathy [61, 62].

In our study, we found several regions with structural abnormalities in patients with schizo-

phrenia. Patients showed elevated vCSF volume and smaller left hippocampus as well as left

thalamus volumes, particularly in individuals without a history of violence [63, 64]. Further-

more, patients had reduction in right thalamus size and a strong trend towards smaller left

amygdala volume was found. With regard to right amygdala, our findings indicated an interac-

tion between violence and diagnosis. The effect appeared to be driven by a double dissociation.

That is, reductions associated with violence were seen for non-psychotic individuals, while for

psychotic patient’s reductions were observed in non-violent individuals. Importantly, after

accounting for substance abuse in our analysis only a trend towards an interaction was

observed.

Overall, our findings in patients are in line with a recent large-scale study of subcortical

brain regions in 2028 individuals with schizophrenia [65]. Among other structures,

Table 4. ANOVA; f/p values are listed for main and interactive effects for each ROI.

ROI DF Diagnosis Violence Diagnosis x Violence

WBV 1 1.492 (.225) .829 (.365) 2.39 (.125)

vCSF 1 27.89 (< .0001***) .140 (.709) 5.82 (.018*)

L. Amygdala 1 3.89 (.051) .045 (.832) .554 (.459)

R. Amygdala 1 .402 (.527) .505 (.479) 3.679 (.058)

L. Hippocampus 1 4.09 (.046*) 2.01 (.160) 5.46 (.021*)

R. Hippocampus 1 3.51 (.064) .609 (.437) 3.73 (.056)

L. Thalamus 1 11.12 (.001**) .211 (.647) 8.36 (.005*)

R. Thalamus 1 7.69 (.007*) .724 (.397) 1.45 (.232)

Error 109

ANOVAs using WRAT-4 T-scores, Age, and SUD as covariates.

* P� 0.05

** P� 0.001

*** P �.0001. Columns includes degree of freedom (DF), F-scores and p-values (italicized).

doi:10.1371/journal.pone.0168100.t004
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abnormalities were found for hippocampus, amygdala, thalamus, and lateral ventricle volumes.

Evidence by us and others underscore widespread morphometric abnormalities in subcortical

regions possible related to aberrant integration and information transfer processes in schizo-

phrenia. Also, recent efforts to establish temporal lobe abnormalities as confirmatory biomark-

ers among youth at high-risk for development of psychosis have produced promising results

[66]. One open question concerns stronger abnormalities in non-violent patients relative to

their violent peers in our data.

With regard to our substance abuse finding it is important to note that a recent meta-analy-

sis of studies probing violence in individuals on the psychosis spectrum concluded that most

of the elevated risk was driven by patients with substance abuse comorbidity [67]. Here we

report, for the first time according to our knowledge, that substance abuse might play a medi-

ating role in the association between amygdala reduction and violence in non-psychotic vio-

lent individuals.

Considering all aggressive individuals in both the VS and NPV group, we found no evi-

dence for shared structural abnormalities underlying violence. However, there might be other

morphological markers and/or other regions of interest that might be important to consider to

determine common structural abnormalities linked to violence. Furthermore, we found no

evidence for amygdala volume reduction in violent patients with schizophrenia. Previous stud-

ies also reported no reductions in violent patients [24–26], but questions remained as to

whether these studies were sufficiently powered to detect differences. Our sample was between

two and three times larger than the ones in previous schizophrenia studies with a focus on vio-

lence [24–26], which provides a measure of confidence that amygdala size might not be part of

the structural abnormalities commonly associated with violence, at least in schizophrenia.

A limitation of the current study is the use of a 1.5T scanner, which does not provide the

same level of spatial resolution as more modern 3T scanners. Our sample is comprised of

chronic patients with schizophrenia and therefore generalizations to patients in their early

stages of illness might not be appropriate. Additionally, the self-report nature of the Buss-

Perry, which has been found to be influenced by factors of social desirability [43] could possi-

bly lead to lower scores, although the LHA scale is not based on self-report and is immune

from concerns of social desirability. Utilizing the LHA scale for grouping purposes is a

strength of the current report because of this consideration. Another strength of the study is

the use of an automated approach to segmentation (FSL’s FIRST), which has been reported to

be a reliable and valid method of subcortical segmentation [68], and is widely used by

researchers in various clinical populations [37, 69, 70]. A final, and important strength, is the

relatively large sample of clinical patients and control participants used in this study, with the

former demonstrating aberrant processing of emotionally salient images [29].

Future research should focus on other areas of grey matter that could be related to the ele-

vated rates of violence in patients with schizophrenia. In this study, due to select a priori
regions of interest, and limited regions within the FIRST library, the following regions were

not investigated. One such region is the superior temporal sulcus (STS), a region associated

with facial recognition [71, 72] which has direct projections to the amygdala [73], and which

has been found to be impaired in the schizophrenia population [74, 75]. Another region of

interest is the striatum, which includes the putamen, previously found to be enlarged in the VS

group [24]. The putamen is part of the FIRST library but was not included in this analysis

because of a priori ROI selection. OFC and PFC regions have been previously implicated in

aggression and schizophrenia and should, in concert with subcortical regions, be considered

in future research. Additionally, large scale neuroimaging and electrophysiology studies

involving genetics (e.g. MAO-A and COM-T) and their role in brain structure and function

could be helpful in delineating differences between the VS and NVS groups from NPV

Neuroanatomy of Violence in Schizophrenia
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individuals. Both MAO-A and COM-T genes have been previously associated with violence

and aggression [76–81], and both have been linked with schizophrenia [82–89].

In summary, our ROI analysis of temporal and subcortical regions confirmed widespread

morphometric brain abnormalities in patients with schizophrenia. We found no evidence for

smaller amygdala size in violent patients with schizophrenia. Finally, smaller amygdala size in

violent non-psychotic individuals was mostly accounted by substance abuse problems within

this group. The latter results might provide indication that substance abuse is a potential medi-

ator in the relationship between brain abnormalities and aggression in non-psychotic individ-

uals. Overall, our results underscore the importance of volumetric abnormalities in aggression

and provide some indication for distinct brain regions in the characterization of psychotic and

non-psychotic violent individuals.
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